Tree Physiology and Growth

Dr. Gary Chastagner Washington State University Puyallup, WA 98371 chastag@wsu.edu

Principal Parts of a Vascular Plant

Vegetative structures – leaves, stems, roots

Reproductive structures – flowers, fruits/cones, seeds

Growth is a cellular process that results in the increase in size and number of leaves, stems, and roots and the production of reproductive structures

Cells

 Basic structural and physiological units of plants Most plant reactions (growth, photosynthesis, respiration, etc) occur at the cellular level

Plant Tissues – Large organized groups of similar cells that work together to perform a specific function

i.e. Meristems, xylem, phloem, etc.

Plant Growth

- Growth occurs via meristematic tissues cell division, elongation and differentiation
- Is influenced by genetics
- Is influenced by environment (water, light, temperature, nutrients, pests)
- Is influenced by plant hormones
- Growth activity can be manipulated by cultural practices (shearing, etc.)

Plant Growth and Development

Three major physiological functions drive growth and development

- Photosynthesis
- Respiration
- Transpiration

Function of Vegetative Structures

Leaves - absorb sunlight to manufacture plant sugars (photosynthesis) and provide energy (respiration) to produce proteins, etc. needed for cell growth

Stems – support, transport of materials (food, minerals, hormones, water, etc,) and storage of carbohydrates

Roots - absorb nutrients and water, anchor plant in soil, support stem, storage of carbohydrates, and produce hormones

Seedling Survival is Closely Related to Seedling Stem Caliper

Source: Bert Cregg, MSU; Adapted from South and Mexal (1984).

Root to Shoot Ratio and Height

Douglasfir seedlings with a shoot/root ratio (S/R) of 0.8 had 25% greater survival than seedlings with a S/R greater than 1 on dry sites in the PNW

Root Structure – 3 major zones

Uptake of Water and Nutrients by Roots

Epidermis – outermost layer where water and nutrient absorption occurs

Root hairs – increase surface area and absorption (short lived)

Cortex – movement of water from epidermis to vascular tissue

Vascular tissue – movement of water, nutrients, and carbohydrates throughout plant

Mycorrhizae – increase nutrient absorption

Mutualism

Ectomycorrhizal Root Tips

Plant Root

Fungus

http://www.ffp.csiro.au/research/mycorrhiza/ecm.htm

Fixed Carbon

Increased Nutrients Increased Water Uptake Protection from Pathogens

Distribution of Root Systems Generally limited to top 12" of soil Affected by host, soil type, saturation and compaction

Roots Require Oxygen to Survive and Grow

Oxygen Requirements

- Root survival need 3% O₂ in soil
- Apical meristem region requires 5 to 10% O₂
- New root formation \geq 12% O₂

Soils and Oxygen Levels

- Undisturbed loam soil 0 to 6" depth ~ 20%
- Sandy soil 15% at 5 feet
- Clay loam soil does not have enough oxygen to support root growth at 3 feet
- Compacted loam soil 5% at 15 inches, roots will survive, but new roots would be stressed

Effect of Soil Compaction on Monterey Pine Shoot and Root Growth

Soil bulk density (g/cm3)		olume ts Roots	Root volume (cm3)	Height (cm)
1.60	3.6	3.0	24.7	20.5
1.48	5.9	4.9	39.3	29.2
1.35	7.0	5.6	47.3	32.8

>bulk density = > compaction

Source: Sands and Bowen 1978. Aust. For. Res. 8:163-170

Annual Shoot and Root Growth Patterns (Conifers in PNW)

Roots Require Oxygen to Survive and Grow

Oxygen Requirements

- Root survival need 3% O₂ in soil
- Apical meristem region requires 5 to 10% O₂
- New root formation \geq 12% O₂

Soils and Oxygen Levels

- Undisturbed loam soil 0 to 6" depth ~ 20%
- Sandy soil 15% at 5 feet
- Clay loam soil does not have enough oxygen to support root growth at 3 feet
- Compacted loam soil 5% at 15 inches, roots will survive, but new roots would be stressed

Effect of Soil Compaction on Monterey Pine Shoot and Root Growth

Soil bulk density (g/cm3)		olume ts Roots	Root volume (cm3)	Height (cm)
1.60	3.6	3.0	24.7	20.5
1.48	5.9	4.9	39.3	29.2
1.35	7.0	5.6	47.3	32.8

>bulb density = > compaction

Source: Sands and Bowen 1978. Aust. For. Res. 8:163-170

Planting Stock Types

- Seedlings bare root and plugs
- Transplants bare root, plug + bare root, and plug + plug
- Rooted cuttings
- Grafted

Planting Stock Type Container (plug) vs bare root

Planting Stock Type

Container (plug) vs bare root

- Out planting performance differences have been variable!
- In general, container seedlings tend to:
 - be less prone to stress during shipping and storage
 - be better on droughty or stressful sites
 - provide a wider window for planting
 - be more expensive for a given size
 - have more root problems
 - take longer for roots to come in contact with soil
 - increase the time for water movement from soil to seedling roots

Container Stock Root Structure

Plug Transplants are Becoming Increasingly Popular

- **Advantages include:**
- rapid turnaround
- maximum control of growing environment during early stages of growth

 advantages of bare root production for the end customer – hardy seedlings that establish rapidly at the out planting site

Vascular System = plumbing

Xylem – conducts water and dissolved nutrients

Phloem – movement of carbohydrates, hormones, etc

Cambium – meristematic tissue

Balsam Fir Christmas Tree Stem

Cambium

Bark

Xylem tracheids fibers parachama cells

Annual growth ring

Photo H.D. Grissino-Mayer http://web.utk.edu/~grissino/gallery.htm#Rings

Conifer Xylem

- Have "nonporus" wood consisting of tracheids, fibers and parenchyma cells
- Tracheids hollow primitive cells (1 mm long) that have pits
- Fibers thick walled, structural strength
- Parenchyma cells produce vascular rays that provide for lateral movement of material across the stem and respond to wounds

Xylem and Phloem Tissues

http://koning.ecsu.ctstateu.edu

http://www.biologie.uni-hamburg.de/b-online/e06/06b.htm

Radial sections of *Abies pectinata* wood showing bordered pits on tracheids

		and the second se		Colorest States and States
	la submissional of the submission of the	A COLOR OF A CALL OF A CAL	and the School S	and the second state of the second state of the second second second second second second second second second

	(Allowing and a second of the	a anti rundadia.			Protection of the second second	The second s
--	---	------------------	--	--	---------------------------------	--

Pith ray

Annual growth ring

Photo Peter v. Sengbusch http://www.biologie.uni-hamburg.de/b-online/e06/abieshof.htm

Tree ring showing springwood (larger) and summerwood (smaller) cells

Resin duct

Photo Laboratory of Tree-Ring Research http://web.utk.edu/~grissino/gallery.htm#Rings

Douglas-fir Tree Rings

Photo © H.D. Grissino-Mayer http://web.utk.edu/~grissino/gallery.htm#Rings

Douglas-fir Increment Cores From Trees Growing in Southeastern Arizona

Photo © H.D. Grissino-Mayer http://web.utk.edu/~grissino/gallery.htm#Rings

Phoem – transport of food and hormones, does not accumulate in rings Material is moved under positive pressure 5 types of cells Sieve cells (pits) – conifers Sieve tubes (hardwoods) **Fibers** Parenchyma Scierids or stone cells – small fiber like cells

Vascular cambium produces xylem and phloem

Cork cambium – located outside functional phloem and produces bark and succulent tissues

Cross Section of a Douglas-fir Stem

Sapwood

- physiologically active, water and nutrient movement, carbohydrate storage

- Water flow is driven by transpiration Bark

Photo © H.D. Grissino-Mayer http://web.utk.edu/~grissino/gallery.htm#Rings

Cambium **Xylem** Sapwood Heartwood Heartwood - dead, contains higher levels of tannins & phenols, provides for structural support

Leaf Structure

Cross Section of a Pine Needle

Typical Composition of Needles

85-90% water

10-15% dry matter

Dry Matter Composition

Photosynthesis – The physiological process plants use to manufacture their own food

Sunlight + carbon dioxide + water is used to produce sugars and oxygen $6CO_2+6H_2O > C_6H_{12}O_6 + 6O_2$

Chloroplasts – a type of plastid that contains chlorophyll and is the site of photosynthesis

Chloroplasts are very small - 400,000/mm²

http://biology.uwsp.edu/courses/botlab/Lab08a.htm

Fate of Light That Strikes a Leaf

Respiration

 The process (oxidation) of converting carbohydrates (sugars and starches) to energy that is needed for cell growth and production of new tissue

 $C_6H_{12}O_6 + 6O_2 > 6CO_2 + 6H_2O + energy$

Does not require light

Production and Utilization of Oxygen and Carbon Dioxide by Plants

http://www.spacebio.net/modules/pb_resource/bioregen_lecture/sld027.htm

Photosynthesis and Respiration Respiration **Photosynthesis Produces** food **Uses food Releases energy Stores energy Uses water Produces water** Uses CO₂ **Produces CO**₂ **Releases O**₂ Uses O₂ **Occurs in sunlight** Occurs in dark as well as light

Movement of Gases and Water Through Stomata

http://extension.oregonstate.edu/mg/botany/photo2.html#figure25

Plant Growth and Development

Three major physiological functions drive growth and development

- Photosynthesis
- Respiration
- Transpiration

Transpiration – loss of water vapor from leaf surfaces via stomata and is affected by soil moisture, temperature, humidity, wind (vapor pressure deficit)

<u>Stomata</u>

Open Closed

Stomata account for 1% of leaf surface area and 90% of transpired water

90% of water taken up by roots is transpired

Stomatal Opening Photosynthesis Temperature Moisture stress Increased ABA

Guard Cell

Plant Transpiration Is Related to Vapor Pressure Deficit

http://www.spacebio.net/modules/pb_resource/bioregen_lecture/sld030.htm

Water

- 90% of plant
- Photosynthesis and respiration
- Turgor pressure and cell growth
- Solvent for minerals and carbohydrates
- Cooling
- Regulation of stomatal opening
- Pressure to move roots through soil
- Chemical reactions

Abscission of Leaves

Stem

Axillary bud

Abscission zone

Vascular bundle

Sclerenchyma

For More Information

Capon, B. 1990. Botany for Gardeners: An introduction and guide. Timber Press, Portland, OR

Kozlowski, T. Wisconsin Woodlands: How Forest Trees Grow.

http://cecommerce.uwex.edu/pdfs/G3277.PDF

Chaney, W. How Trees Grow. <u>www.fnr.purdue.edu/inwood/past%20issues/how%2</u> <u>0trees%20grow.htm</u>

Duryea and Malavsi. How trees grow in the urban environment. <u>http://edis.ifas.ufl.edu/BODY_FRoo2</u>

Botany Basics http://extension.oregonstate.edu/mg/botany/