

Way to look very broadly at the landscape and trees:

Typing based on bedrock, climate, soil, surface water characteristics, disturbance regimes, land use

Forest Type - a category defining forests based on natural groups of different tree species commonly occurring together over large areas. Named for one or more dominating species (e.g., birch-beechmaple, mapleoak-white pine).

Why Trees Grow Where They Do?

- 1. Adaptations over time
- 2. Climate: length of growing season, precipitation
- 3. Relationship to other trees
 - Succession, seed source/ absence, tolerance
- 4. Past site history
 - human disturbance
 - natural disturbance
- 5. Inherent site capability (aka thank the glacier)
 - Soil: water & nutrient levels, productivity
 - topography: slope/ aspect/ elevation (effect climate)

Adaptations Over Time

- Trees have been adapting to their environment since the beginning. This has set broad, but very definite limits to where they grow.
 - loblolly pine → south
 - − red spruce north
- They adapt to specific sites within their growing region
 - black gum wetter
 - pitch pine → drier

Climate

- Not weather- long term weather pattern
- Controls amount of solar energy & water
- Temperature, precipitation, wind
 - Average annual rainfall
 - Snow depth and timing
 - Length of growing season
- Affects soil development
- North-south, high-low elevation
- e.g paper birch/ black birch

Relationship to Other Trees

- Amount of light and seed source
- Determines whether or not a tree will regenerate- shade tolerance
 - aspen, willow need direct sun
 - white pine need partial sun
- How much light a tree has determines how fast it grows

Seed

- Source or lack of one determines what might grow
- Not every year a good seed year for everything
- Seeds disseminated by
 - wind, gravity, animals, birds
 - most seed falls within 200 feet of the parent tree

Succession

- The change in plant communities over time
 - as plants inhabit a site they change it making less suitable for selves more suitable for others
- Changing light conditions
- Soil temperature, nutrient moisture regimes
- Not a neat path of succession
 - differs by site
 - humans and natural disturbance
- As forest change food & shelter change and animal populations change

Shade Tolerance

Tolerance is the ability of a tree to grow satisfactorily in the shade of another tree.

Tolerant vs. Intolerant

- Intolerant to shade
 - tends not to reproduce under self
 - "sun-loving"
 - tend to be light seeded, wind-dispersed
 - early successional species
- Tolerant to shade
 - reproduce under self
 - Tend to beheavier seeded moved by gravity, animals
- Intermediate

Intolerants

- -can't reproduce in shade
- -usually short lived
- -wind dispersed, light seeded
- -early successional or pioneer species

Tolerants

- -reproduce and survive in shade for long periods
- -usually long lived
- -late successional or climax species

Eastern Hemlock

Softwoods	Hardwoods	
Extremely Tolerant		
balsam fir	American beech	
eastern hemlock	sugar maple	
Tolerant		
red spruce white spruce	red maple	
northern white cedar		
Intermediate		
eastern white pine	white ash red oak	
	yellow birch	
Intolerant		
red pine	paper birch	
Extremely Intolerant		
	aspen	

Tolerant	Intermediate	Intolerant
Eastern hemlock	White pine	Eastern red cedar
Balsam fir	Yellow birch	Red pine
Atlantic white cedar	Black birch	Pitch pine
Hophornbeam	American chestnut	Butternut
American hornbeam	American elm	Hickories
American beech	Red maple	Paper birch
Sugar maple	Ashes	Larch
Red spruce	Oaks	Willows
Black spruce		Aspens
White spruce		Cottonwood
Northern white cedar		Grey birch
Silver maple		Black locust
basswood		

Why Trees Grow Where They Do?

- 1. Adaptations over time
- 2. Climate: length of growing season, precipitation
- 3. Relationship to other trees
 - Succession, seed source/ absence, tolerance
- 4. Past site history
 - human disturbance
 - natural disturbance
- 5. Inherent site capability (aka thank the glacier)
 - Soil: water & nutrient levels, productivity
 - topography: slope/ aspect/ elevation (effect climate)

Human Disturbance

- Native Americans burned forests for hunting, girdled and cleared forests for agriculture.
 - Coastal and riverine
- From 1700 to the present humans are the number one disturbance factor affecting the structure and composition of our forests.

Past Land Use

- Ag & Human activity may have altered the ability of soils to hold minerals
- Eroded & loss of organic matter
- Encouraged regeneration of atypical species
 - by altering the seedbed, encouraged white pine
 - the white pine story

Natural Disturbance

- Hurricanes- 1938, 1954, 1955
- Tornado- 2008
- Wind events
- Ice storms- 1998, 2008
- Fire
 - more control today
 - fire dependant/beneficiaries
 - pitch pine type, ridge top oaks, "scrub" oak, birches, aspens
 - pre-European, some Native American burn river bottomlands for ag and game
- Individual, small group death

Disturbances and Forest Dynamics

Harvard Forest Archives

- -Greatly influence species composition, age and structure.
- -Kill individual trees, patches of trees or stands.
- -Hurricanes, ice storms, insects, pathogens, fire, thunderstorms, wildlife, logging, conversion to agriculture.

Glacial Lake Hitchcock

- -Formed 15,000 years ago in Ct.
- -Lasted for more than 4,000 years.
- -At its largest it spanned over 200 miles down the valley.
- -Large deposits of clay, sand and gravel.

11,000 years ago Spruce woodlands were the dominant forest.

-Patches of trees interspersed with tundra vegetation.

-Coincided with the arrival of the first Native Americans.

Soils

- Soils have four main ingredients
 - mineral particles
 - organic matter
 - water, and
 - air
- The type of soil in a given area will help determine what types of trees can grow & how well.

Soil

Enriched Soils

- Lots of organic matter and fine particles.
- Very productive for hardwoods: sugar maple, white ash

Outwash Soils

- -Mostly sand and gravel, left by glacial meltwater.
- -Very productive for white pine

Certain Soils "Favor" Certain Species

- white ash, sugar maple
- beech
- red oak
- white pine
- red spruce, hemlock, balsam fir

- moderate well drain& enriched finetexture
- sandy tills
- sandy tills & outwash
- outwash & sandy tills
- shallow pan, poorly drained, outwash, shallow to bedrock

Topography: Slope/ Aspect/ Elevation

- Soil habitat types related to topography
- Water regime related
 - More water on north facing slopes and at base of slopes than on south facing slopes and on top
- Elevation
 - temperature, soil habitat types, moisture all related

Inherent site capability

