

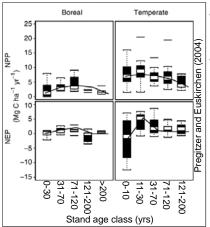
Outline

- Forest carbon 101
- Influence of silvicultural treatments on carbon dynamics
- Adaptation considerations in light of global change
- Tradeoffs and challenges

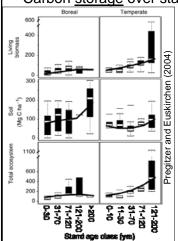
Forest carbon 101

Carbon terminology

- Basic components associated with carbon accounting
 - <u>Carbon pool</u>-a reservoir having the capacity to accumulate or lose carbon over time (e.g., soils, aboveground biomass)
 - <u>Carbon stocks</u>-measured, estimated, or modeled quantity of carbon held in a particular pool
 - <u>Carbon sequestration</u>-the removal of atmospheric carbon with subsequent storage in carbon pools (such as oceans, forests or soils)
 - Additionality-carbon storage that is above and beyond what would have happened in a "business as usual" scenario



Patterns in forest carbon dynamics


• Carbon sequestration rates over stand development

- Younger forests generally sequester carbon at higher rate
- Greater overall release of carbon from young forests due to respiration (higher decomposition rates)

Patterns in forest carbon dynamics • Carbon storage over stand development

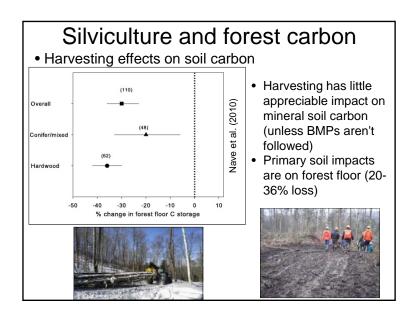
- The size of carbon pools increase with stand age
 - Larger live trees
 - Accumulation of dead material
 - Soil organic matter

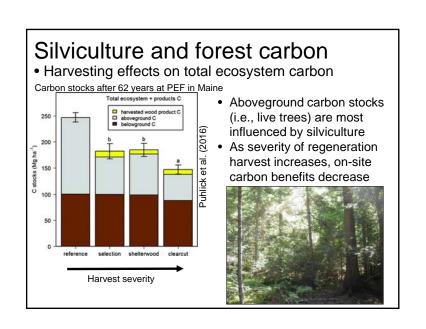
Forest Carbon Fun Fact

Where are the most carbondense forests in the world? Australia (Eucalyptus regnans)

Forest Carbon Fun Fact

- Total aboveground biomass (total mass of trees in a given area) is a function of tree size and wood density (typically expressed as specific gravity)
 - Eucalyptus regnans specific gravity = 0.49 g/cm³
 - Coast redwood specific gravity = 0.36 g/cm³

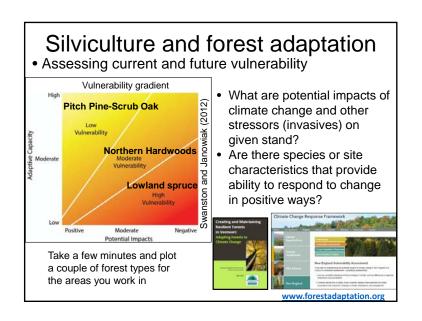

327 feet



Silviculture and forest carbon

Silviculture and forest carbon • Harvesting effects on live-tree carbon stores Unmanaged • 30 ft²/ac • 60 ft²/ac • 90 ft²/ac • 120 ft²/ac • 150 f

Forest carbon: take home points

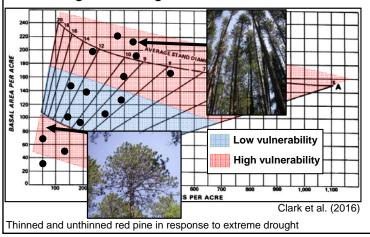

- Silvicultural systems that promote and maintain high levels of stocking provide greatest carbon benefit over time
 - Two-aged and uneven-aged methods (e.g., irregular shelterwoods, selection methods)
 - Promotion of stratified, mixed species stands
 - · Extended rotations
- Application of structural retention regardless of method can offset carbon losses from site (large live trees, coarse woody debris)
- Silviculture matters, but keeping forests forests is most critical step for sustaining carbon benefits

CAUTION - Tree Cutting in hope

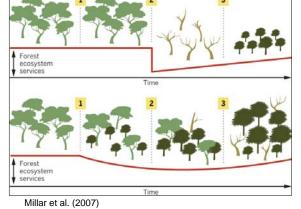
Silviculture and Forest Adaptation

Silviculture and forest adaptation

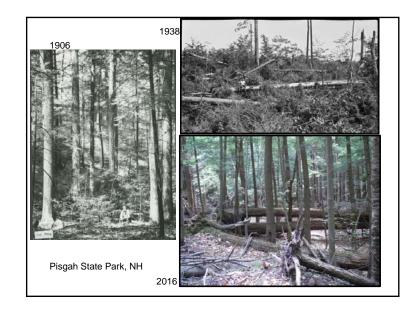
- Main adaptation options
 - Resistance-ability to withstand change and maintain normal functioning
 - Resilience-capacity to recover from disturbance or change and return to normal functioning
 - Transition (response)-actively accommodate change to encourage adaptive response

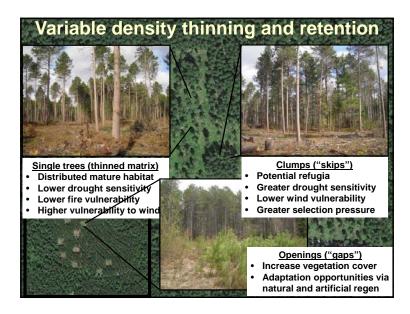

Silviculture and forest adaptation

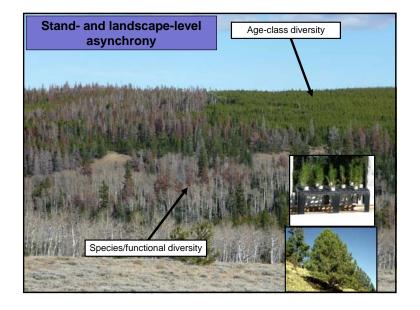
- Resistance approaches
 - Primary focus is minimizing vulnerability to future stressors
 - Thinning to increase vigor and water availability
 - Fuel reduction treatments
 - Invasives control (release and site preparation)

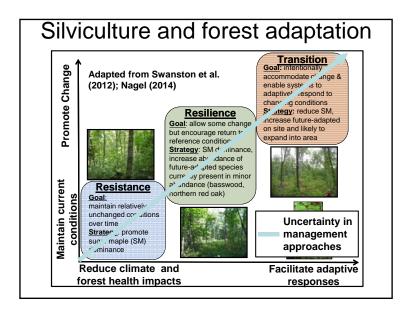


Silviculture and forest adaptation Thinning and drought resistance


Silviculture and forest adaptation Resilience and transition approaches




Silviculture and forest adaptation


- Resilience and transition approaches
 - Focus on increasing levels of response diversity and ecosystem complexity
 - <u>Response diversity</u>-diversity in reproductive mechanisms, sensitivity to environmental conditions, stressors (insects, disease, fire)
 - Greater species and structural diversity at stand- and landscape-scales provides more pathways for recovery

Tradeoffs and Challenges

Tradeoffs and challenges

- Maximizing adaptation and mitigation potential on same site may prove difficult
 - Mitigation strategies will always trend towards high stocking, low levels of disturbance
 - · May increase vulnerability to future stressors
 - Most species projected to do well under future climate are shade intolerant or intermediate (e.g., red oak, bitternut hickory, black cherry)

Tradeoffs and challenges Uncertainty about future conditions places renewed

- Uncertainty about future conditions places renewed emphasis on "options forestry"
 - Balance between retaining structural and compositional legacy of present stand with focus on promoting multiple options to respond to emerging conditions
 - Focus on regeneration methods that accommodate greatest range of species while maintaining mature structure
 - Group/patch selection, irregular shelterwoods, two-aged variants
 - Lack of future options should trigger need for investment in regeneration

