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INTRODUCTION

Foresters in northeastern North America who seek to prac-
tice ecologically-based silviculture face many challenges,
ranging from incomplete knowledge of ecosystem processes
to resisting financial pressures that lead to unsustainable
harvesting. This paper attempts to blend our rapidly advanc-
ing knowledge of disturbance ecology with existing silvi-
cultural knowledge and experience. My goal is to illustrate
how two key attributes of natural disturbances—recurrence
interval and patch size—can be readily accommodated by
contemporary modifications to a traditional, though little
used, silvicultural system.

DISTURBANCE ECOLOGY
OF NORTHEASTERN FORESTS

Large-scale commercial forestry in northeastern North
America is centered in the northern New England States
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(Maine, New Hampshire, Vermont) and the Canadian
Maritimes (mainly New Brunswick and Nova Scotia). Unlike
southern and central New England, much of this region was
never settled or cleared for agriculture, and thus remains as
a large, virtually unbroken block of contiguous forest stretch-
ing from the eastern coast of New Brunswick through the
Adirondack Mountains of New York. Two major forest types
predominate here, each with many subtypes and local vari-
ants in response to edaphic and climatic variation: the so-
called “spruce-fir” forest, that contains assemblages of red
spruce (Picea rubens Sarg.) and balsam fir (Abies balsamea
(L.) Mill.), and the “northern hardwood forest,” dominated
historically by sugar maple (Acer saccharum Marsh.)
American beech (Fagus grandifolia Ehrh.), and yellow birch
(Betula alleghaniensis Britton). Common associates include
red maple (Acer rubrum L.), eastern hemlock (Tsuga
canadensis (L.) Carr.), eastern white pine (Pinus strobus
L.), and northern white-cedar (Thuja occidentalis L.).



These species can live for 300 years or more, and most
are quite shade-tolerant, typically reproducing by advance
regeneration that may exist for many decades in the under-
story before canopy accession (Seymour 1995). Although
they can grow and develop well in single-cohort stands and
are commonly managed this way today, such structures
were uncommon before human exploitation began in the
18th century. Owing to abundant precipitation throughout
the growing season, stand-replacing fires were very infre-
quent, as were stand-replacing windstorms, with estimated
return intervals of many centuries to millennia (Lorimer
and White 2003). As a consequence, gap dynamics were
the most common natural disturbance, which led naturally
to a forest structure dominated by late-successional, multi-
aged stands (Seymour et al. 2002).

HISTORY OF HUMAN EXPLOITATION
AND MANAGEMENT

Centuries of human exploitation for forest products, first
for large sawlogs and later (ca. 1900) for smaller-diameter
pulpwood, have radically changed the forest structure.
Remnants of the primary, old-growth forest are quite rare,
and many, such as the Big Reed Reserve in northern Maine
owned by The Nature Conservancy, have been reserved
from commercial logging and studied intensively by ecolo-
gists (e.g., Fraver 2004). The typical commercial forest
landscape is dominated by stands that are younger and more
even-aged than during presettlement. Changes in species
composition have been less dramatic; nevertheless, typical
stand compositions have shifted from the slower-growing,
late-successional species to those that are favored by fre-
quent harvest disturbance, such as red maple, paper birch
(Betula papyrifera Marsh.), aspen (Populus spp.), and bal-
sam fir. It is not uncommon to find legacies of the preset-
tlement forest remaining in many stands, such as large cull
trees and small, long-suppressed saplings of late-succes-
sional species absent from the overstory, but these are usu-
ally a byproduct of their low commercial value, not a
conscious act of retention.

When I arrived in Maine in the late 1970s, the land-
scape was dominated by well stocked, even-aged spruce-fir
stands that, I was told, had originated after the devastating
spruce budworm (Choristoneura fumiferana Clem.) out-
break ca. 1913-19. Careful reconstructions of these stands
using records and increment cores, coupled with review of
early descriptions of the original forest and early harvesting
(e.g., Cary 1894, Hosmer 1902) invariably revealed that
these even-aged stands had originated by some heavy, often
repeated, timber harvests ca. 1880-1925. Only pure fir stands

(which were originally neither common nor extensive)
seemed to have a unique budworm origin (Seymour 1992).
Many of these dense, even-aged, and ecologically imma-
ture spruce-fir stands were again clearcut during the 1980s,
partly in response to the budworm outbreak of that time.
Many industrial landowners treated large areas of the regen-
erating third-growth forest with herbicide release and pre-
commercial thinning, with little attempt to favor red spruce
over fir. Now, as these stands approach commercial size,
there are large areas of 25-year-old, spaced, nearly pure fir
stands, where 150 years before stood old-growth red spruce-
yellow birch forests with fir as a minor component.

SILVICULTURE FOR ECOLOGICAL
RESTORATION

Challenges
Any serious attempt at ecological forestry (see Seymour

and Hunter 1999) in this region must confront the simpli-
fied age structures and altered compositions of repeatedly
harvested stands using a patient restoration approach. The
goal of such a restoration strategy is to re-create a forest
dominated by diverse multi-aged stands, with at least some
having a late-successional component that is deficient in
the commercial forest. In the Acadian region, this problem
is arguably more difficult than in regions like the Pacific
Northwest where the natural stand-development patterns
follow a single-cohort model, and the challenge is merely
softening clearcuts with structural retention measures. In
the Northeast, leaving scattered islands or reserve trees in
clearcuts or uniform shelterwoods of >10 ha, although
valuable in some respects, often fails to address the more
fundamental mismatch of even-aged silviculture with natu-
ral processes.

During the past decade or so as ecological forestry con-
cepts have entered mainstream thinking, I believe that most
academics and scientists share a common view about the
difference of our present forest from that of presettlement.
Practitioners are generally more skeptical, not necessary of
the underlying science, but of its relevance to their day-to-
day existence. Further, just as the consciousness of ecologi-
cal forestry is being raised, there has been a wholesale
sell-off of large parcels formerly held by forest industry to
timberland investors whose time horizons are much shorter
and who expect double-digit returns. Relative to the goals
of restoration and ecological sustainability, much of this
former industrial forest just needs a “rest,” yet it is faced
with ever-increasing pressure to generate income from the
remaining growing stock. My own experience suggests that
stewards of public forests, especially those under manage-
ment by state forestry agencies in the United States, have
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resisted such pressures and tend to be more receptive to
restoration silviculture than many privately owned forests.

Possible Restoration Pathways
Conceptually, the challenge of converting even-aged

stand structures to more complex ones is straightforward: 
a series of regular harvest entries, spaced out over a rela-
tively long conversion period (e.g., 50 to 100 years), each
regenerating only a relatively small portion of the stand. Of
course, this is easier said than done, especially if the stand
is already understocked from prior harvests. Nyland (2003)
discusses two different ways to approach this problem: uni-
formly distributed reductions in overstory density at each
cutting versus creation of distinct canopy gaps. As diagram-
med by Nyland, the first option begins as a light, uniform
shelterwood establishment cutting and ends (after 5 cutting
cycles) as single-tree selection. The second option can be
categorized as patch or group selection throughout. Both
assume equal cutting cycles and an age-balanced stand at
the end of the conversion period.

The shelterwood method is commonly recommended in
this region for regenerating spruce-fir, northern hardwood,
and white pine-red oak forests (Hannah 1988, Seymour 1995)
and is viewed by many foresters as the best way to restore
degraded stands to higher timber productivity. Although
sometimes considered an alternative to even-aged manage-
ment because it involves “partial cutting” at the establish-
ment stage, shelterwood management is at best a two-aged
system depending on the density of reserve trees, if any. As
practiced by most private owners, establishment cuttings
are uniformly applied and fairly heavy (40- to 60-percent
removals); furthermore, reserve trees left after overstory
removal are not numerous (generally <10 percent of the
original stocking) and thus do not significantly affect the
dominant younger cohort. So, although uniform shelter-
woods may be an effective method to improve species com-
position and provide economic returns, they fail as a system
for restoring multi-aged stand structures. 

Group selection cutting is much less common than shel-
terwood, but is gaining popularity in formerly high-graded
northern hardwood forests with an overabundance of beech
regeneration. The improved light environment of even small
gaps gives sugar maple and the birches an advantage over
the vegetative beech reproduction, as long as advance regen-
eration of maple is established and birch seed reaches the dis-
turbed gaps (Seymour 1995). Group selection is quite
uncommon in spruce-fir forests; examples are limited to
some public ownerships and small private woodlots. Although
preferable to shelterwood for ecological restoration, group
selection cutting has several drawbacks. If the matrix

between groups is not treated, the overall harvest can be
very light and thus problematic economically. Not treating
the matrix, however, risks losing volumes of valuable but
short-lived species, such as balsam fir, paper birch, and
aspen, that might not survive until the next entry.

Principles and Specifics
To convert uniform stands to more irregular, multi-aged

structures, one must consciously regenerate a portion of 
the stand at each entry while keeping the canopy of the 
surrounding matrix relatively intact and thus, unregenerated.
A comprehensive review of natural disturbance rates in this
region (Seymour et al. 2002, fig. 1) suggests that the area
regenerated should average about 1 percent per year, equiv-
alent to a 100-year return interval. Assuming the goal is a
balanced within-stand age structure at the end of the con-
version period, one simply multiplies the annual distur-
bance rate by the cutting cycle, just as one would do in a
forest of even-aged stands under area regulation (Nyland
1996). Adopting a cutting cycle of 20 years thus would dic-
tate that each entry regenerate 20 x 1% = 20% of the stand
at each entry. Furthermore, regeneration should occur in
small gaps (under 0.1 ha) in order to remain within the
bounds of natural disturbance parameters (Seymour et al.
2002). Finally, to restore late-successional characteristics,
reserve trees must be retained in the gaps as they are regen-
erated; otherwise, there will obviously be no trees over age
100 when the conversion is complete. Ideally, reserve trees
are retained permanently and should consist primarily of
long-lived species from the main canopy. As they grow to
ecological maturity and eventually die, they will restore an
important late-successional structural component that is
typically absent from managed forests; they will function
as biological legacies (Franklin et al. 1997, Seymour and
Hunter 1999) and replenish the pool of large, woody mate-
rial on the forest floor.

I believe that the guiding principle of such a silvicultural
system should be a stand structure based on area, not tree
size. Such a guide takes the form of a within-stand age
structure, rather than a tree size structure such as the nega-
tive exponential diameter distribution commonly associated
with balanced single-tree selection cutting (O’Hara 1996,
Seymour and Kenefic 1998, Smith et al. 1997). Specifically,
an area-based structure defines what percentage of the stand
is regenerated at each entry, along with a distribution of
patch (gap) sizes that comprises this area. An area structure
requires the forester to consider the regeneration process
explicitly at each entry, and thus avoids the historical pitfalls
of size-based, multi-aged systems that did not lead to ade-
quate ingrowth of the desired species and were thus aban-
doned throughout North America during the 1950s in favor
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of single-cohort systems (Curtis 1998; Seymour, in press;
Smith 1962).

Uniform vs. Gap-oriented Spatial Patterns
Relative to the goal of restoring age diversity, I believe

that Nyland’s (2003) first option, repeated uniform cuttings,
is not practical in our region and, arguably, does not work
ecologically. First, Acadian forests tend to develop dense
understories of advance regeneration under even light canopy
disturbances; hence the appeal of the simple uniform shel-
terwood method for production systems based on natural
regeneration. After a uniform cutting to 60-percent relative
density as recommended by Nyland (2003), the understory
will invariably fill up with tolerant advance growth. Further,
light uniform removals from the overstory serve only to
release this regeneration, not establish new cohorts as
required. In effect, the understory quickly reaches a stem-
exclusion condition (Oliver and Larson 1996), and the stand
never contains more than two cohorts. At best, a third cohort
might establish after the final overstory removal in areas
disturbed by harvesting equipment, but this is a common
feature of all systems. For conversion systems to work over

time, the dominant matrix must be kept at sufficient density
to prevent regeneration over most of the stand at a given
time; regeneration should occur only in defined gaps created
at each entry.

Another important drawback of uniform patterns is the
fact that the light cuttings required for true restoration, typ-
ically no more than 10- to 20-percent removals, are quite
impractical operationally if distributed evenly throughout
the stand. Concentrating such light entries, as done in gap-
oriented systems, promotes harvesting efficiency and costs
should be little more than for clearcutting if haul roads are
in place. Gap systems also allow other silvicultural treat-
ments (e.g., enrichment planting to restore species, early
stand tending) to be conducted efficiently.

A Hybrid Silvicultural System: 
The Acadian Femelschlag

In 1994, a team of forest scientists and wildlife ecolo-
gists from the University of Maine faculty set out to design
a long-term experiment in ecological forestry known as the
Forest Ecosystem Research Program (FERP). This program

Figure 1—Evaluating the natural disturbance comparability of two gap-oriented silvicultural systems, using the reference metric from
Seymour et al. (2002).
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would complement the existing, conventional silvicultural
systems on the Penobscot Experimental Forest maintained
by the USDA Forest Service Northeastern Research Station
since 1950 (Sendak et al. 2003). We based our silvicultural
systems on the disturbance rates, patterns, and structural
features of natural forests as best we understood them. One
system chosen was a traditional light group-selection cut-
ting that removed 10 percent of the stand in small gaps on
a 10-year cutting cycle while retaining 30 percent of the
initial growing stock within the gaps as permanent reserve
trees. Although such a system arguably mimics natural
dynamics closely, the overall harvest rate is so light that is
was difficult to carry out logistically and economically. 

In an attempt to formulate a more operationally feasible
system without sacrificing its ecological basis, we devised
a hybrid between group selection and uniform shelterwood.
The key concept is to apply the well-known principles of
shelterwood regeneration in a patch-wise fashion within the
stand, rather than uniformly throughout, leaving reserve
trees in the groups after they are fully regenerated. Instead
of stand age structure changing temporarily as in a uniform
shelterwood, group shelterwood systems vary spatially, and
at times contain all stages of the shelterwood sequence:
unregenerated matrix awaiting treatment, two-storied patches
following establishment cutting, and free-to-grow sapling
regeneration after removal of the overstory except scattered
reserves. In order to make harvesting as efficient as possible
and to retain some intolerant species in the regeneration,
we chose a gap size of 0.2 ha, slightly larger than most 
natural gaps (Seymour et al. 2002). Further, we designated
about 10 percent of the initial growing stock as permanent
reserve trees, making this a “group shelterwood with
reserves.” We chose to carry out the conversion cuttings in
five entries spaced 10 years apart, and then allow the stand
to develop without regeneration cutting for another 50 years.
This equals a 1-percent annual disturbance rate over the
entire 100-year conversion period, but is effectively “front-
loaded” during the first 50 years at 2 percent per year.
Unlike a classical group selection system with a constant
cutting cycle, this system explicitly does not attempt to
achieve any sort of balanced within-stand age structure,
just a diverse, irregular one that nevertheless represents
quite a departure from the initial single-cohort structure.

The most accurate description of this system using con-
temporary North American silvicultural terminology would
be an “irregular group shelterwood with reserves.” Group
comes from the spatial pattern of the cuttings and is needed
to distinguish it from a uniform application. Irregular comes
from the extended regeneration period relative to a more

conventional shelterwood, and describes the uneven height
structure of the resulting regeneration. With reserves comes
from the retention of trees from the original cohort beyond
the regeneration period, for reasons unrelated to the regen-
eration process itself. European foresters have long applied
such a system, known in Germany as the Femelschlag, in
which the groups under regeneration are expanded at each
entry until they coalesce (Spurr 1956). In his classic
description of European silvicultural systems, Troup (1928)
describes several regional variants of the Femelschlag
widely practiced at that time for converting even-aged stands
to more irregular structures. We have also adopted this
approach in our FERP experiments, and have thus chosen
to describe our system as the Acadian Femelschlag. 

Some Application Details: Locating Skid Trails, 
Initial Gaps, and Reserve Trees

We elected to harvest within the matrix between groups
during the first entry, mainly to presalvage balsam fir, paper
birch, and aspen that were reaching their natural life span.
In the matrix, we were very careful not to remove any large
dominant trees that would make permanent canopy gaps
and thus create unwanted nuclei of regeneration. Skid trails
were designated to connect the gaps, and occasional spur
trails were needed to treat the intervening matrix. In future
entries when gaps are expanded, trails will be relocated
through the matrix where necessary to avoid damaging
established reproduction.

Initial gaps were located in two different stand condi-
tions. In patches of well-established advance regeneration
resulting from partial canopy breakup in the two decades
prior to initiating the experiment, the overstory was removed
completely except for the requisite reserve trees. Areas of
these existing gaps were estimated in the field and sketched
on a stand map. Additional gaps were located as needed
throughout the more intact matrix until the requisite area
(20 percent of the total stand) was achieved. In this latter
case, the cut within the gap attempted to leave a shelter-
wood overstory basal area of 14-18 m2/ha (60 to 80 ft2/acre)
to provide shade and seed for new recruitment. These over-
woods will be removed in the second entry (except perma-
nent reserve trees) as the gaps are expanded.

Reserve trees were designated at the same time the stand
was marked for cutting. Any tree with obvious wildlife
usage (e.g., large cavities) was designated; others were
selected from the larger d.b.h. classes of long-lived, and
sometimes uncommon, species. Since our goal was to per-
manently retain 10 percent of the stand, and the target
residual basal area, including gaps, was about 23 m2/ha
(100 ft2/acre), we used a 10 basal area factor (English)
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wedge prism to distribute reserve trees such that no place
in the stand was lacking at least one “in” tree.

Quantifying What Is “Natural” as a Silvicultural
Benchmark

Silviculturists in the Northeast seeking to emulate natu-
ral disturbance regimes have historically relied on general
ecological principles and intuition. To overcome this obsta-
cle, we created a simple metric based on a comprehensive
review of disturbance literature for the region that allows
foresters to assess how closely their silvicultural systems
approach natural patterns (fig. 1). The axes of the diagram—
intervals between disturbance and contiguous areas dis-
turbed—both have direct silvicultural analogues (Seymour
and Hunter 1999). For systems that do not regenerate the
entire stand in one entry (e.g., group selection), the fre-
quency should be thought of as the time required to regen-
erate the entire stand, assuming patches do not overlap. This
is given by the formula: frequency (or effective rotation) =
(cutting cycle, in years)/(proportion of stand regenerated at
each entry). The fitted line that bounds the upper limit of
the disturbance data becomes the space-time benchmark
point for any system.

Consider a group-selection system that regenerates 20
percent of the stand at each entry, in patches averaging 0.2
ha, on a 10-year cycle. The return interval (effective rota-
tion) is thus 10/20% = 50 years. Next, compute the natural
return interval of a 0.2-ha patch: Interval = [0.2 x 108.2]
0.2764 = 101 years (from fig. 1). The ratio of the planned
return interval to its natural analogue is termed the natural
disturbance comparability index, in this case 50/100 = 0.5,
meaning that such a system would effectively regenerate
this stand in gaps of this size about twice as rapidly as nat-
ural disturbances would. Note that lengthening the cutting
cycle to 20 years, or reducing the patch size to 0.014 ha,
would place the system exactly on the line. The Acadian
Femelschlag described above also falls exactly on the line
because the entire “rotation” (the time between the begin-
ning of gap creation in two successive applications of the
system to the same area) is effectively 100 years (50 years
of group regeneration cutting followed by 50 years of stem
exclusion stand development during which only intermedi-
ate treatments are applied).

It is also instructive to compare the planned age distribu-
tion of the irregular group shelterwood with that of undis-
turbed old-growth stands in the region. The age structure of
the shelterwood will be, by design, distinctly bimodal: five
closely spaced cohorts that span a range of about 40 to 50
years resulting from the expanding gap cuttings, plus a pop-
ulation of much older reserve trees chosen from the initial

stand. For example, if the stand were 90 years old at the
beginning (as in the case of one of the FERP experimen-
tal blocks), by the time the regeneration process is com-
plete, these reserves will be 140+ years old, and nearly 200
after one complete cycle when the stand is again ready for
regeneration cuttings. 

Figure 2 shows the age structure of three old-growth red
spruce stands in the Big Reed Reserve in northern Maine
as reconstructed by Fraver (2004). Note that all are some-
what bimodal, two distinctly so, indicating that recruitment
in such stands is episodic and irregular. Note that irregular
group shelterwood systems with reserves—with extended
periods of stand regeneration in patches, followed by periods
of stem exclusion—arguably emulate this structure more
faithfully than the classic balanced single-tree or group
selection stand with continuous, temporally constant recruit-
ment. In the group shelterwood, the managed cohorts would
be analogous to those under age 100 in the natural forest,
and the reserve trees would be analogous to the old-growth
trees over the managed rotation (ca. 100 years). In practice,
a managed stand would have more growing space allocated
to cohorts under age 100 and less to the old-growth legacy,
assuming legacy trees would never be harvested.

CONCLUSIONS

Irregular group shelterwoods with permanently retained
reserve trees offer great promise as a viable method to
restore age diversity and “naturalness” to Acadian forests
that have become simplified from over a century of heavy
cutting. Like any silvicultural system, however, they are not
a panacea for all conditions, even where landowners are
committed to ecological restoration. In pure, single-cohort
stands dominated by early successional species, restoration
of later-successional species which may invade the under-
story is the main ecological objective, and uniform shelter-
woods (with reserves) may offer the only way to capture
the value in the present stand before it reaches maturity. In
this case, restoration of age structure can then begin during
the next rotation, where the presence of more long-lived
species offers more options. Conversely, in stands that have
been managed to retain multi-aged, late-successional quali-
ties, some form of selection cutting with more regular
entries and smaller gaps may be more appropriate.
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Figure 2—Age-structures of three old-growth red spruce stands in the Big Reed Reserve, T. 8 R. 10, Maine (Fraver 2004), show-
ing the very irregular patterns of canopy recruitment over three centuries. Group shelterwood silvicultural systems can mimic this
pattern, assuming the 1-100 cohorts represent the managed (harvested) stand, and those over 100 are reserve trees that provide the
biological legacy. In practice, a managed stand would have more trees in the “managed” component and fewer in the old-growth
legacy.
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