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Continental-scale monitoring programs with standardized survey protocols play an important role in
conservation science by identifying species in decline and prioritizing conservation action. However, rare,
inaccessible, or spatially fragmented communities may be underrepresented in continental-scale surveys.
Data on these communities often come from decentralized, local monitoring efforts that differ in their
goals and survey protocols. We combine 16 point count datasets, controlling for differences in protocol
and detection probabilities to estimate regional trends for 14 spruce-fir forest bird species across
Northeastern and Midwestern United States, a vulnerable community threatened by numerous anthro-
pogenic stressors and widely considered a priority for conservation. Our analyses indicated that four spe-
cies considered as ecological indicators for this community, Bicknell’s Thrush (Catharus bicknelli),
Magnolia Warbler (Setophaga magnolia), Blackpoll Warbler (Setophaga striata) and Yellow-bellied
Flycatcher (Empidonax flaviventris), each exhibited significant declines. Olive-sided Flycatcher (Contopus
cooperi), a species of concern in parts of its range, and two additional species for which no previous con-
cern existed, the Evening Grosbeak (Coccothruastes vespertinus) and the Gray Jay (Perisoreus canadensis),
each also showed significant overall declines. Five out of nine species with sufficient data for analyses
from Northeastern and Midwestern surveys showed significant differences in trends between these
regions. Spruce-fir obligate species were more likely to decline significantly than species that use
spruce-fir in addition to other habitat types. These results demonstrate the value of combining disparate
data sources for analyzing regional patterns of population trends to confirm and extend conservation
concern for some species and identify others for which additional attention may be needed.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Monitoring of plant and animal populations and their environ-
ments is a fundamental component of conservation science
(Nichols and Williams, 2006; Lovett et al., 2007). Long-term mon-
itoring data can be used to identify species in decline, track the
spread of invasive species, assess the effectiveness of management
practices, and understand species’ responses to environmental dis-
turbances (Niemi and McDonald, 2004; Marsh and Trenham, 2008;
Lindenmayer and Likens, 2009). For birds, the most extensively
monitored animal taxon on the planet, continental-scale
monitoring programs such as the North American Breeding Bird
Survey (BBS; Sauer et al., 2014) have been invaluable in assessing
population trends and assigning conservation priorities (Robbins
et al., 1989; Sauer and Droege, 1992; Rich et al., 2004). However,
rare, inaccessible, or spatially fragmented habitats may be under-
represented in road-side continental-scale surveys (Hanowski
and Niemi, 1995). Data on bird assemblages that breed in these
habitats therefore come from decentralized, local, and sometimes
ad hoc monitoring efforts that differ in their goals and protocols
(Marsh and Trenham, 2008). In such cases, when data from larger
geographic scales is absent, local data collected using a diversity of
methodologies and at shorter time scales can be combined to esti-
mate long-term trends in abundance (Houlahan et al., 2000; Loh
et al., 2005; Van Strien et al., 2013; Pagel et al., 2014). Such

http://crossmark.crossref.org/dialog/?doi=10.1016/j.biocon.2015.04.029&domain=pdf
http://dx.doi.org/10.1016/j.biocon.2015.04.029
mailto:ralston@eco.umass.edu
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http://www.sciencedirect.com/science/journal/00063207
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analyses allow local conservation and management considerations
to be placed in broader geographic contexts (Houlahan et al.,
2000). Here, we combine local and regional point count survey
data, controlling for inter-survey differences in protocol and detec-
tion probabilities (Sólymos et al., 2013a), to estimate population
trends for a group of spruce-fir forest birds.

Vulnerable and threatened spruce-fir forest birds of the upper
Midwestern and Northeastern regions of the United States are an
example of an assemblage that is poorly covered by
continental-scale monitoring programs. High-elevation spruce-fir
forests occur on the tops and sides of mountains on steep, difficult
terrain, and accessibility is largely limited to hiking or ski trails.
Low-elevation spruce-fir forests are dense and boggy with few
roads to interior patches. The BBS often misses species that breed
largely in these inaccessible forests. For example, the Bicknell’s
Thrush (Catharus bicknelli), a globally vulnerable species (IBTCG,
2010) and an indicator of montane spruce-fir habitat (US Forest
Service, 2006), has not been detected on a BBS route in the
United States since 1996 (Sauer et al., 2014). As a result, little infor-
mation exists regarding long-term population trends of spruce-fir
birds at broad geographic scales (Niven et al., 2004; King et al.,
2008). Spruce-fir forest birds in the United States are affected by
anthropogenic development (Glennon and Porter, 2005; Zlonis
and Niemi, 2014), commercial timber harvests (Titterington
et al., 1979), defoliation from episodic insect pest outbreaks
(Venier and Holmes, 2010), atmospheric deposition of environ-
mental toxins (Rimmer et al., 2005), and may be especially vulner-
able to modern climate change (Atwood et al., 1996; Rodenhouse
et al., 2008; Ralston and Kirchman, 2013). Spruce-fir forest eco-
tones may already be shifting upwards in elevation (Beckage
et al., 2008). Birds at their southern periphery are shifting their dis-
tribution northward (Zuckerberg et al., 2009), occupying unsuit-
able habitats (DeLuca, 2013), and suffering losses in reproductive
success as a result of modern warming (Waite and Strickland,
2006). Climate change may also be causing an increase in occu-
pancy of an important nest predator, the red squirrel
(Tamiasciurus hudsonicus), in montane spruce-fir forests (Rimmer
et al., 2001; DeLuca, 2013). It is therefore important to establish
population baselines for these climate vulnerable species, espe-
cially at their southern periphery.

Because of heightened conservation concern for this assem-
blage, several organizations have established monitoring programs
that specifically target spruce-fir birds, some of which have now
been implemented for over two decades. For example, the
Vermont Center for Ecostudies, the White Mountain National
Forest (WMNF), and the Wildlife Conservation Society each coordi-
nate long-term survey programs in montane forests or
low-elevation boreal spruce bogs (US Forest Service, 2006; Scarl,
2011; Glennon, 2014). In addition, several National Forests,
Parks, and Wildlife Refuges throughout the Northeast and upper
Midwest have endeavored to monitor spruce-fir forest bird species
on local or regional scales (Howe and Roberts, 2005; King et al.,
2008; Johnson, 2012; Zlonis et al., 2013; Faccio and Mitchell,
2014). Our goal was to combine and collectively analyze these
datasets for the first time in order to estimate broad scale trends
in abundance.
2. Methods

2.1. Study area

We describe spruce-fir forests of the eastern United States as
forested landscapes in which spruce (red spruce [Picea rubens],
white spruce [P. glauca] and/or black spruce [P. mariana]) and bal-
sam fir (Abies balsamea) are dominant or codominant. This is a
catch-all definition and includes a variety of habitat types (Eyre,
1980; Pastor and Mladenoff, 1992; Sperduto and Nichols, 2011;
Edinger et al., 2014) covering over 5 million ha in the upper
Midwest (Minnesota, Wisconsin, Michigan; hereafter ‘Midwest’),
and Northeast (New York, Vermont, New Hampshire, Maine; here-
after ‘East’; US Forest Service, 2010; Fig. 1). These Midwestern and
Eastern regions correspond closely to physiographic strata used in
previous analyses of regional avian trends (Sauer and Droege,
1992; Sauer et al., 2014) and used by Partners in Flight as conser-
vation units (Rich et al., 2004). The Midwestern region of the pre-
sent study corresponds to the ‘‘Boreal Hardwood Transition’’
physiographic area, and the Eastern region consists primarily of
the ‘‘Adirondack Mountains’’ and ‘‘Spruce-Hardwood Forests’’
areas (following Partners in Flight terminology). At forested wet-
land sites, black spruce dominates with tamarack (Larix laricina)
and little or no fir. Lowland sites with drier soils are composed of
red spruce, balsam fir and occasionally white spruce, or white pine
(Pinus strobus). In the Midwest, upland spruce-fir forests include
varying amounts of quaking aspen (Populus tremuloides) and paper
birch (Betula papyrifera). In the mountainous east, spruce-fir dom-
inates at mid to high elevations and can contain mountain paper
birch (Betula cordifolia) and mountain ash (Sorbus americana). At
higher elevations, spruce and broadleaf species decrease in abun-
dance and mountain forests can be nearly pure stands of balsam
fir. Due to their ecological distinctiveness and vulnerability,
spruce-fir forests have been recognized as a key component of
regional biodiversity across Northeastern and Midwestern United
States.

2.2. Species selection

We constructed a list of avian spruce-fir forest obligates and
associates by consulting authoritative sources that provide matri-
ces of ‘preferred’ or ‘utilized’ habitat types for birds in the
Midwest (Robbins, 1991) and East (DeGraaf and Yamasaki, 2001).
We defined spruce-fir forest ‘obligates’ as species that prefer and
utilize only spruce-fir forest types. We defined spruce-fir ‘associ-
ates’ as species that prefer spruce-fir, but also utilize other forest
types. These inclusion criteria excluded a number of species that
can be common in spruce-fir forests but do not ‘prefer’ them and
are also broadly distributed in other forest types. Further, we con-
sidered only passerines for analysis, as detection of non-passerines
during point count surveys can be low. We characterized 18
passerines as either spruce-fir obligates (n = 8), or associates
(n = 10; Table 1). Our list is largely coincident with target species
of boreal bird surveys (King et al. 2008; Scarl, 2011; Glennon,
2014), and includes several species considered ecological indica-
tors for high-elevation spruce-fir forest (Bicknell’s Thrush,
Magnolia Warbler [Setophaga magnolia] and Yellow-bellied
Flycatcher [Empidonax flaviventris]; US Forest Service, 2006). Four
species on our list, Bay-breasted Warbler (Setopahaga castanea),
Rusty Blackbird (Euphagus carolinus), White-winged Crossbill
(Loxia leucoptera), and Pine Siskin (Carduelis pinus) were excluded
entirely from analyses because of insufficient data, leaving 6 obli-
gates and 8 associates in our analysis.

2.3. Point count data

Point count data were obtained from 16 monitoring programs
(hereafter ‘programs’) throughout the spruce-fir forest zone of
the Midwestern and eastern United States (Fig. 1; Online
Appendix Table A1). Point counts took place within the period from
1989 to 2013 and varied across programs in temporal (mean:
13 years; range: 2–24 years) and spatial coverage (median:
3269 km2; range: 159–426,059 km2; Online Appendix Table A1).
All surveys included in our analyses are standard single-observer



Fig. 1. Location of point count surveys. Dark gray shading is the North American distribution of spruce-fir forests. White circles in inset represent survey locations used to fit
detection models, but not used in trend analyses because of insufficient data. Black circles in inset are survey locations used in trend analyses: CHIP = Chippewa National
Forest, MN; SUPR = Superior National Forest, MN; STCR = St. Croix State Forest, MN; CHEQ = Chequamegon National Forest, WI; ISRO = Isle Royale, MI; NNF = Nicolet National
Forest, WI; OTTA = Ottawa National Forest, MI; WCS = Wildlife Conservation Society, Adirondack Low Elevation Boreal Bird Surveys; MBW = Vermont Center for Ecostudies,
Mountain Birdwatch in Adirondacks (MBWadk), Catskills (MBWcats), Green Mountains (MBWvt), White Mountains (MBWnh), and Maine (MBWme); WMPP = White
Mountain National Forest PermaPlot Surveys; WMNF = White Mountain National Forest High Elevation Bird Surveys.

Table 1
14 species categorized as spruce-fir forest obligates or associates, and estimated overall and regional trends. Trend estimates less than 1.0 indicated a population decrease,
estimates greater than 1.0 indicated an increase, and trends equal to 1.0 indicated a stable population.

Species Spruce-fir
habitat use

Migratory strategy Overall trenda Midwestern trenda Eastern trenda

Olive-sided Flycatcher (Contopus cooperi) Associate Migratory 0.960 (0.947–0.973)⁄ 0.961 (0.948–0.975)⁄ 0.951 (0.901–1.008)
Yellow-bellied Flycatcher (Empidonax flaviventris) Associate Migratory 0.976 (0.971–0.981)⁄ 0.980 (0.973–0.987)⁄b 0.971 (0.964–0.978)⁄b

Gray Jay (Perisoreus canadensis) Obligate Non-migratory 0.981 (0.962–0.999)⁄ 0.921 (0.900–0.941)⁄c 1.037 (1.012–1.065)⁄c

Boreal chickadee (Poecile hudsonicus) Obligate Non-migratory 1.006 (0.997–1.015) – 1.006 (0.997–1.015)
Red-breasted Nuthatch (Sitta canadensis) Associate Non-migratory 1.016 (1.011–1.021)⁄ 1.025 (1.019–1.032)⁄c 0.987 (0.978–0.998)⁄bc

Golden-crowned Kinglet (Regulus satrapa) Associate Migratory 1.014 (1.009–1.021)⁄b 1.025 (1.017–1.033)⁄c 1.000 (0.992–1.008) c

Ruby-crowned Kinglet (Regulus calendula) Associate Migratory 1.054 (1.046–1.062)⁄ 1.052 (1.037–1.067)⁄ 1.054 (1.046–1.065)⁄

Bicknell’s Thrush (Catharus bicknelli) Obligate Migratory 0.977 (0.968–0.986)⁄ – 0.977 (0.968–0.986)⁄

Swainson’s Thrush (Catharus ustulatus) Associate Migratory 1.035 (1.031–1.039)⁄ 0.988 (0.980–0.996)⁄bc 1.043 (1.038–1.048)⁄c

Magnolia Warbler (Setophaga magnolia) Obligate Migratory 0.991 (0.987–0.996)⁄b 0.995 (0.989–1.001) 0.995 (0.989–1.003)
Cape May Warbler (Setophaga tigrina) Obligate Migratory 1.013 (0.998–1.030) 1.013 (0.998–1.030) –
Palm Warbler (Setophaga palmarum) Associate Migratory 1.079 (1.046–1.118)⁄ – 1.079 (1.046–1.118)⁄b

Blackpoll Warbler (Setophaga striata) Obligate Migratory 0.991 (0.988–0.994)⁄b – 0.991 (0.988–0.994)⁄

Evening Grosbeak (Coccothraustes vespertinus) Associate Non-migratory 0.937 (0.923–0.957)⁄ 0.946 (0.930–0.970)⁄c 0.856 (0.836–0.873)⁄c

a Asterisk (⁄) indicates trends significantly different from 1.000 (90%CI do not overlap with 1.000).
b Trends that become non-significant when considering propagated error as opposed to bootstrap estimated 90% confidence intervals.
c Species for which Midwestern and Eastern trends were significantly different.
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point count surveys, but differ in their duration (5–10 min), num-
ber and length of time intervals (1–10 intervals ranging from 1 to
5 min), survey radius (100 m – unlimited radius), and number of
distance intervals (1–5 intervals; Online Appendix Table A1).
Surveys were generally conducted in the early breeding season
(mean survey date: June 15) and early morning (mean survey time:
1.77 h after local sunrise). All fly-over and other visual observa-
tions were removed from analyses. Individual programs were
located entirely in the United States and covered local or regional
geographic areas (159–8367 km2) except Vermont Center for
Ecostudies’ Mountain Birdwatch (MBW) which covers high eleva-
tion spruce-fir forests in New York and New England and extends
into eastern Canada (426,059 km2).

2.4. Estimating trends

Point count data varied across programs in count duration, sur-
vey radius, and number of distance sampling categories, variation
which could bias estimates of detection probability and population
trends (Etterson et al., 2009; Matsuoka et al., 2012; Sólymos et al.,
2013a). To account for the heterogeneity in our datasets, we
employed the ‘QPAD’ method (Sólymos et al., 2013a), which uses
removal (Farnsworth et al., 2002) and distance sampling
(Buckland et al., 2001) methods to control for the effects of survey
protocol in the estimation of detection probabilities. Probability of
detection is the product of availability (p, the probability that a
present individual sings during the survey) and perceptibility (q,
the probability that a singing individual is detected by an observer;
Marsh and Sinclair, 1989). The expected count of a given species
during a point count survey can therefore be written as:
E(C) = Npq, where N is the true species abundance. QPAD provides
conditional maximum likelihood estimates of p and q while allow-
ing survey radius, duration, and the number of distance and time
intervals to vary across programs. It also accounts for covariates
that might influence detection including time since sunrise,
Julian day, and percent tree cover (Sólymos et al., 2013a).

We used the package ‘detect’ (Sólymos et al., 2013b) in program
R version 3.1.2 (R Core Team, 2013) to implement the QPAD
approach and fit survey data to nine removal and two distance
models (Online Appendix Table A2). Removal models included
Julian day, time since local sunrise, and their quadratic terms as
covariates of availability. Distance models used percent tree cover
as a covariate of perceptibility (Sólymos et al., 2013a). Percent tree
cover for each point was obtained from 2010 MODIS Vegetation
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Continuous Fields of 250 m resolution (DiMiceli et al., 2011). Fitted
removal and distance models with the lowest BIC were selected for
each species (Online Appendix Table A2), then applied to the entire
data set to obtain estimates of p, q, and the effective survey area (A)
for every surveyed point.

To better match spatial scale of other programs, we divided
MBW data into five programs for trends analysis: Adirondacks,
NY; Catskills, NY; Green Mountains, VT; White Mountains, NH;
and Maine. MBW survey protocol changed in 2011, and while
our approach accounts for inter-program differences in protocol,
we did not allow intra-program variation. Therefore, MBW surveys
after 2010, which includes all surveys in Canada, were removed
from trend analyses. Survey points at which a species was never
found and programs with less than eight years of data were
excluded from trend analyses. This resulted in a total of 15 pro-
grams for which we analyzed trends for each species. Based on
results from a power analysis (Online Appendix), we excluded
from trend analyses program data for each species with a sample
size (detections and non-detections) of less than 100 or less than
50 detections.

Trends in abundance were calculated for each species and pro-
gram using a nonlinear regression, implemented in R, with equa-
tion N = abyc, where a is the intercept (abundance at first year of
program), b is the slope (trend), y is the survey year, and c is an off-
set for the detection probability (multiple of p, q, and A) (King et al.,
2006, 2008; Sólymos et al., 2013a). Trend estimates less than 1.0
indicated a population decrease, estimates greater than 1.0 indi-
cated an increase, and trends equal to 1.0 indicated a stable popu-
lation. To estimate confidence intervals around trends we first
performed 1000 bootstrap resamples of the survey data for each
program. We then conducted a nonlinear regression following
the methods above on each bootstrap, and used the 5th and 95th
percentiles of the slopes from these regressions, respectively, as
the lower and upper bounds of 90% confidence intervals. We con-
sidered a trend as significant if 90% CI did not overlap with 1.000.
We use 90% CI because of the potential conservation consequences
of failing to detect declining trends (Bart et al., 2004; King et al.,
2008). We examined plots of residuals over time for each
species-by-program combination and found no indication of serial
autocorrelation. Because the coverage of points varied across years
in some programs, we used linear regression to look for directional
changes in latitude, elevation, and tree cover of points surveyed
that might bias trend estimates. We tested for the effects of survey
methodology on trends by resampling program data to include
counts recorded in a subset of the time and distance intervals
and comparing trends estimated from whole datasets to those esti-
mated from subsets of the same programs. For example, when pos-
sible we calculated and compared trends from entire ten minute
surveys and trends from the first 5 min of those same surveys.
Similarly, we calculated and compared trends from unlimited
radius surveys, to trends estimated from the same surveys when
only birds detected within 100 m were included.

To estimate the regional (Midwest and East) and overall (all
programs) trends for each species we used an approach similar
to route regression (Geissler and Sauer, 1990; King et al., 2006),
and found the weighted mean (b) of program-level trends using
the equation b = R(wibi). Relative program weights (wi) were pro-
portional to abundance at the midyear of the program (ai), length
in years of the program (yi), and inversely by the variance associ-
ated with the trend estimate (vi). So, wi = ci/Rci, where ci = aiyi/vi

(King et al., 2006). 90% CI were estimated for regional and overall
trends using bootstrap resampling as described above. We con-
cluded a significant difference in the trends between Midwestern
and Eastern regions for a species if the 95% confidence intervals
around the difference between these trends did not overlap with
0.00. To ensure that our bootstrap estimated confidence intervals
did not unfairly underestimate uncertainty, we additionally prop-
agated uncertainty from program-level trends using a Gaussian
error propagation approach (Lo, 2005). Propagated error for regio-
nal and overall trends was calculated by dividing the square root of
the sum of the squared errors for program-level trends by the
number of program level trends (Lo, 2005). This effectively finds
the mean error for program level trends and applies it to the regio-
nal or overall trend estimates. We used Chi-squared tests imple-
mented in R to determine whether population trends differed
between migratory and non-migratory species, or between
spruce-fir ‘obligates’ and ‘associates’. We hypothesized that
spruce-fir obligates would be more likely to show declines than
associates which might be buffered against population declines
by the ability to utilize additional habitat types (Kotiaho et al.,
2005; Newbold et al., 2013).
3. Results

Trend estimates varied considerably across surveys within each
species. For species with data from multiple surveys the mean
range in trend was 0.13 (Online Appendix Table A3). Seven of our
focal species (50%) demonstrated overall significant declines as
determined by weighted means of all program-specific trends
and bootstrap estimated 90% confidence intervals (Olive-sided
Flycatcher [Contopus cooperi], Yellow-bellied Flycatcher, Gray Jay
[Perisoreus canadensis], Bicknell’s Thrush, Magnolia Warbler,
Blackpoll Warbler [Setophaga striata], and Evening Grosbeak
[Coccothraustes vespertinus]), five significantly increased
(Red-breasted Nuthatch [Sitta canadensis], Golden-crowned
Kinglet [Regulus satrapa], Ruby-crowned Kinglet [Regulus calen-
dula], Swainson’s Thrush [Catharus ustulatus], and Palm Warbler
[Setophaga palmarum]), and two exhibited no overall change
(Boreal Chickadee [Poecile hudsonicus] and Cape May Warbler
[Setophaga tigrina]; Table 1, Fig. 2). Chi-squared tests indicated sig-
nificant differences in trends of obligate and associate spruce-fir
species (v2 = 7.00, df = 2, P = 0.030). A larger proportion of obli-
gates showed overall declines (66.7%) compared with associates
(37.5%), and no obligate species showed a significant overall
increase, while 62.5% of associate species significantly increased.
There was no significant difference in the proportion of migratory
and non-migratory species showing overall declines (v2 = 0.63,
df = 2, P = 0.730). Regional trends were significantly different
between the Midwestern and Eastern regions for one obligate,
and four associate species (Table 1).

Propagated errors for regional and overall trends were largely
consistent with bootstrap estimated confidence intervals. For three
species, using propagated error resulted in a categorical change in
overall trend, relative to interpretations from 90% confidence inter-
vals. Golden-crowned Kinglet, Magnolia Warbler, and Blackpoll
Warbler each had propagated uncertainty for overall trends over-
lapping with 1.000, while they were interpreted as having signifi-
cant trends using bootstrap estimated confidence intervals
(Table 1). If these three species were considered as having stable
trends, chi-squared tests still indicated significant differences in
trends of obligate and associate spruce-fir species (v2 = 9.1,
df = 2, P = 0.011), but obligates no longer showed a larger propor-
tion of declining species (33.3%), compared to associated (37.5%).
No other conclusions differ based on the use of either 90% confi-
dence intervals or propagated error.

We found little evidence that detected declines were the result
yearly variation in suitability of surveyed sites or biased by survey
protocol. We did detect significant changes in either elevation, lat-
itude, or percent tree cover for 7 of the survey programs (Online
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Appendix). However, the magnitude of changes were minimal, and
in most cases the changes were into presumably more suitable
conditions (higher elevation, higher latitude, or greater tree cover)
meaning any reports of declines in these programs may be conser-
vative estimates of declines. In only two cases were changes in
suitability over the duration of the survey program to the effect
that reported trends may be negatively biased (significant
decreases in surveyed elevation in White Mountain National
Forest Perma Plots and latitude in Superior National Forest), but
based on the magnitude of these changes we feel any bias in these
programs will be negligible. By comparing trends estimated from
whole datasets and subsets based on duration and radius, we find
no consistent evidence that trend is biased by survey protocol. We
detected a significant difference in trend and a categorical change
in trend interpretation when using protocol subset data in only 2 of
the 76 (2.6%) possible comparisons, and these results were not
consistent across species or programs.
Fig. 2. Trend estimates for each species and surveys with a sample size greater than
represent bootstrap estimated 90% confidence intervals. Error bars around regional and
confidence intervals (left) and propagated uncertainty from survey-level trends, calculate
trends (90% CI do not overlap with 1.0), and open boxes are non-significantly different fr
but that are considered non-significant according to propagated error. Asterisks next to s
ordered roughly west to east.
4. Discussion

This study demonstrates how analysis of multiple datasets can
be coordinated to identify population trends across multiple geo-
graphic regions and scales. Because ecological data from multiple
geographic regions and spatial scales are valuable in effectively
managing threatened species and communities (Poiani et al.,
2000; Johnson et al., 2004; Wallace et al., 2010), this approach
can be used to increase the utility of local monitoring efforts and
their contribution to conservation planning. This may be especially
useful for rare species or those that inhabit inaccessible or geo-
graphically sparse habitats. These species tend to be underrepre-
sented in continent-scale monitoring programs but may be
extensively monitored by ad hoc surveys at a local or regional
scales (Hanowski and Niemi, 1995).

In the case of avian spruce-fir species, the combination of local
and regional data to examine population trends has allowed us to
100 and greater than 50 detections. Error bars around Midwest and East surveys
overall mean trends are divided to display both represent bootstrap estimated 90%
d using Gaussian error propagation (right). Closed black boxes represent significant
om 1.0. Gray boxes represent mean trends with 90%CI that do not overlap with 1.0,
pecies common names indicate spruce-fir obligate species. Surveys along X axis are
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refine our understanding of declines in species of conservation
concern and to identify declines in species previously thought to
be secure. Examples of the former include Bicknell’s Thrush and
Olive-sided Flycatcher, both listed by the Committee on the
Status of Endangered Wildlife in Canada as ‘‘Threatened’’, and by
the International Union for the Conservation of Nature (IUCN) as
‘‘Vulnerable’’ and ‘‘Near Threatened’’, respectively. Recent
decreases in occupancy have been reported for Olive-sided
Flycatcher in the Adirondacks (Glennon, 2014) and long-term
declines have been reported in other parts of the species’ distribu-
tion (Altman and Sallabanks, 2012; Sauer et al., 2014). A significant
overall decline reported here extends concern for this species in
our study area. Bicknell’s Thrush has received extensive conserva-
tion attention (IBTCG, 2010), and our results suggest this should
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continue, and that similar attention would be justified in
Olive-sided Flycatcher. Gray Jay, Yellow-bellied Flycatcher,
Magnolia Warbler, Blackpoll Warbler, and Evening Grosbeak are
all categorized by IUCN as species of ‘‘Least Concern’’ and have
received minimal conservation attention, though population decli-
nes have previously been reported for some of these species
(Bonter and Harvey, 2008; King et al., 2008; Sauer et al., 2014;
Glennon, 2014). We find evidence for overall declines in all of these
species, though propagated errors for Magnolia Warbler and
Blackpoll Warbler indicate declines are possibly non-significant.
That we find at least some evidence for decline in these species
suggests further investigations of their statuses in the eastern
and Midwestern United States is warranted. For one species,
Evening Grosbeak, dramatic modern declines in abundance and
range contractions (Bonter and Harvey, 2008; Sauer et al., 2014)
follow an equally large range expansion in the late 19th and early
20th centuries (Gillihan and Byers, 2001). More work is needed to
determine whether the current trajectory is part of naturally
dynamic population processes in this irruptive species, or whether
it is indicative of more widespread environmental degradation.

Examining trends at multiple scales and geographic regions has
allowed us to better understand the population status of several
species. For example, by combining data from multiple survey pro-
grams that access underreported high elevation forests, we were
able to detect a significant increase in Swainson’s Thrush in the
Northeast, where all eight survey programs showed a significant
increase in this species. Using data from BBS and Christmas Bird
Counts, BirdLife International (2015) reports a range-wide
non-significant decline for Swainson’s Thrush, similar to what we
observe in our Midwest datasets. Swainson’s Thrush has signifi-
cantly increased in high elevations in recent decades (Scarl,
2011), and we believe our regional Eastern trend captures this pop-
ulation growth at higher elevations that may be missed in large
scale national datasets. Similarly, by using a weighted mean of
program-level trends, we find support for declines in both
Yellow-bellied Flycatcher and Blackpoll Warbler. Previous analyses
using data from only large scale data sets, or from a single local
survey program failed to detect significant declines for these spe-
cies (King et al., 2008; Scarl, 2011; BirdLife International, 2015).
Despite the potential value of combining datasets to estimate
regional and overall trends, our results for Bicknell’s Thrush
demonstrate that weighted means should be interpreted cau-
tiously and only in the context of program-level trends. The signif-
icant overall trend for Bicknell’s Thrush in this study is driven by
WMNF High Elevation Surveys, the only program showing a signif-
icant decline. Contrasting with this, MBW surveys reveal no signif-
icant changes for Bicknell’s Thrush. This seeming contradiction
might be partly explained by a difference in program years (King
et al., 2006). Because programs differ in the temporal coverage, dif-
ferences in trends across programs may represent both geographic
and temporal variation. It is possible that for Bicknell’s Thrush,
MBW data (2003–2010) indicate a recent leveling off of popula-
tions following declines on a longer time scale as indicated by
WMNF data (1993–2013). Examining program level trends in con-
cert allows us to be specific about where and when populations
have been declining.

Spruce-fir forests in the United States have been affected in
recent history by commercial forestry, anthropogenic develop-
ment, disturbance from insect pest outbreaks, atmospheric deposi-
tion, and climate change (Miller-Weeks and Smoronk, 1993;
Glennon and Porter, 2005; Fraver et al., 2007; Rodenhouse et al.,
2008). Any of these factors, in addition to those faced during
migration and on the wintering grounds, might be contributing
to the observed trends. Although our analyses cannot explicitly
identify causal mechanisms underlying population trends, we
argue the present study does provide a framework in which causal
mechanisms operating at multiple spatial scales can be investi-
gated in future studies. Trends for five species were significantly
different between Midwest and East regions, and variation in
trends exists across programs within species. Environmental stres-
sors, land use history, management practices, and effects of climate
change also vary regionally and locally and might contribute to
geographic variation in avian trends. Future studies that correlate
population trends with regional and local environmental factors
may be able to identify the mechanisms underlying population
trends and the best management practices for this avian assem-
blage. For example, the effects of climate change on spruce-fir
communities are, in particular, of great concern to managers and
conservationists (Rich et al., 2004; Rodenhouse et al., 2008).
Future studies that compare trends from the present study with
those in more northerly Canadian populations may be able to
determine whether climate change is directly contributing to
trends in avian abundance. Similarly, the severity and periodicity
of spruce budworm (Choristoneura fumiferana) outbreaks differs
considerably between the Midwestern and Eastern regions
(Fraver et al., 2007; Robert et al., 2012), providing an opportunity
to determine how this disturbance agent might be impacting
long-term trends in associated bird species. Further investigations
to identify point-level environmental and disturbance factors driv-
ing trends and how climate change affects those factors are cur-
rently under way.

We present the most data-rich and detailed examination of
avian spruce-fir population trends to date for a large portion of
the eastern and Midwestern regions of the United States. Results
indicate that conservation concern for this group is warranted with
50% of spruce-fir species significantly declining across the study
region. This includes significant declines in 66.7% of spruce-fir obli-
gates, which were more likely to decline than associates. We were
able to confirm and extend species-specific conservation concern
within the spruce-fir forest community and identify species for
which additional attention may be needed. However, we empha-
size that despite the combination of local data, several spruce-fir
species still lack enough data to thoroughly evaluate their status.
For example, while we find no significant overall decline for
Boreal Chickadee, this trend estimate comes from a single survey
program in the Northeast. BirdLife International (2015) reported
significant declines in Boreal Chickadee populations, and it is pos-
sible that our failure to detect these trends comes from a lack of
geographic coverage in our dataset. For four species, data were
insufficient to estimate trends anywhere in the study area. This
includes Rusty Blackbird which may be one of the most precipi-
tously declining species in North America (Greenberg and
Droege, 1999; Greenberg and Matsuoka, 2010). This emphasizes
the need for continued and expanded efforts to monitor this
threatened assemblage.
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