

Alternative shelterwood approaches for natural regeneration of oak-dominated hardwood stands on mesic sites in southern New England

Journal:	Journal of Sustainable Forestry
Manuscript ID	MS 894
Manuscript Type:	Original Article
Date Submitted by the Author:	01-Jan-2017
Complete List of Authors:	Frey, Brent; Mississippi State University Ashton, Mark; Yale School of Forestry and Environmental Studies
Keywords:	silvicultural methods, seedling establishment, regeneration cuttings, mixed-species, forest management

2		
3	2	Alternative shelterwood approaches for natural regeneration of oak-dominated hardwood
4	3	••••••
5		stands on mesic sites in southern New England
6	4	BRENT R. FREY ¹ and MARK S. ASHTON ²
7	5	¹ Department of Forestry, Mississippi State University, MS State, MS, USA
8	6	² Yale School of Forestry and Environmental Studies, New Haven, Connecticut, USA
9		•
10	7	ABSTRACT
11	/	
12	0	From station house and a station of the state of the state of the state in Section
13	8	Few studies have evaluated regeneration methods for oak-hardwood forests in Southern
14	9	New England. Red oaks in second growth stands subjected to selective fellings (high-
15	10	grading) on mesic sites are reportedly replaced by black birch, red maple and/or sugar
16	11	maple. Such sites have proven difficult to secure oak regeneration. We studied
17 18	12	establishment and growth of regeneration on a mesic-till soil supporting a one-hundred-
10	13	year-old, even-aged, oak-hardwood stand. Treatments comprised three different
20	13	shelterwoods – uniform, irregular, and group – versus a control. We monitored
20 21		
21	15	composition, density, and growth of regeneration over an eight-year period. Results
22	16	showed that the uniform sh <mark>elterw</mark> ood, and to a lesser degree the irregular shelterwood,
23	17	was characterized by vigorous regrowth of oak's key competitors, black birch and red
24 25	18	maple. Results suggest that regeneration cuttings should be more opportunistically timed
26	19	to oak masting and seedling establishment events, or that follow-up release treatments
27	20	may be required to reduce competition around individual oak seedlings. The group
28		
29	21	shelterwood limited competitors, while maintaining a cohort of oaks that may be more
30	22	competitive upon later release. Group shelterwoods may be another viable approach to
31	23	developing red oak, particularly given unpredictable seed production and where
32	24	intensive follow-up treatments are not feasible.
33		
34	25	KEYWORDS. Silvicultural methods, seedling establishment, regeneration cuttings,
35	26	mixed-species, forest management
36	20	mixed-species, forest management
37		
38	27	RUNNING TITLE: Shelterwood approaches for regenerating oak stands
39		
40	28	CONTACT INFORMATION
41		
42	29	Brent Frey – Department of Forestry, Thompson Hall, Mississippi State University 39762
43		
44	30	brent.frey@msstate.edu, 1-662-325-2775
45	31	
46	32	Mark Ashton - School of Forestry and Environmental Studies, Marsh Hall, Yale
47	33	University 06511; mark.ashton@yale.edu
48		
49	34	ACKNOWLEDGMENTS
50	54	
51	25	
52	35	We would like to thank Yale University and the Yale School Forests for funding and
53 54	36	logistical support, and graduate students Rafael Bernardi, Francis Eaton, David Ellum,
54 55	37	Alex Finkral, Heather Griscom, Caroline Kuebler, Shana Lieberman, John McKenna,
55 56	38	Vincent Medjibe, Steven Roberge, and Eli Sagor for help in measurements over the
56 57	39	period of the study.
57 58	40	r
58 59	-U	
60		

\mathbf{r}
4

```
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
```

INTRODUCTION

43	Regeneration of oak has been widely recognized as a problem throughout its range
44	(Lorimer 1993). Many studies have documented oak regeneration challenges under
45	different silvicultural systems for upland oak-hardwood forests of the Southern
46	Appalachian regions of the Carolina's and Tennessee (e.g. Parker and Swank, 1982; Beck
47	and Hooper, 1986; Loftis, 1983; Loftis, 1990; Brose et al., 1999) and middle Appalachian
48	forests of Pennsylvania, Virginia and West Virginia (e.g. Tryon and Carvel, 1958; Carvel
49	and Tryon, 1961; Smith and Miller, 1987; Kays et al., 1988; Schuler and Miller, 1995;
50	Fei et al., 2006; Steiner et al., 2008). With the absence of disturbance (in particular
51	ground story fires), the oaks (particularly red oak, Quercus rubra L.) in eastern hardwood
52	forests are often replaced by more mesic and or shade-tolerant competitors such as
53	American beech (Fagus grandifolia L.), tulip poplar (Liriodendron tulipifera L.), black
54	birch (Betula lenta), yellow birch (B. alleghaniensis Britton), red maple (Acer rubrum
55	L.), or sugar maple, (A. saccharum Marsh.) (see Kelty and Nyland, 1981; Loftis, 1985;
56	Abrams 1992; Brose et al., 1999). Most of these studies have demonstrated that
57	shelterwoods timed to groundstory burning and/or the use of stem injection herbicides to
58	take out competing shade tolerant understory are the most successful regeneration
59	methods to retain oak in a new stand (Loftis, 1983; Smith and Miller, 1987; Loftis,
60	1990b; Schuler and Miller, 1995; Brose et al., 1999; Steiner et al., 2008).
61	In southern New England only one study has examined potential regeneration

methods for oak and associated hardwoods. Ward and colleagues compared the growth

and performance of regeneration in four treatments - a uniform shelterwood, diameter-

Page 3 of 32

64	limit cutting (high-grade), coppice with standards, an incomplete overstory removal
65	(commercial clearcut), and a complete overstory removal (one-cut shelterwood) (Ward
66	and Stephens, 1999, Ward et al., 2005). These treatments were all compared to an uncut
67	control. Results showed regeneration density increased in all treatments as compared to
68	the control except the diameter limit; that volume growth was lowest in the diameter-
69	limit cutting; and that the shelterwood produced the highest commercial volumes in the
70	long term by retaining a strong component of oak, while diameter-limit cutting had the
71	lowest commercial volumes with a scarce amount of oak (Ward and Stephens, 1999;
72	Ward et al., 2005). Furthermore, like other forests of the Appalachians, their studies
73	showed that oak had significant competition from black birch, yellow birch and red
74	maple (Ward and Stephens, 1993; 1994; 1996). Long-term plot records now show a
75	strong decline in the dominance of oak with a shift to beech, maple and birch in
76	Connecticut and Massachusetts (Ward and Barsky, 2000).
77	Other related studies to this regeneration issue in southern New England have
78	largely focused on growth performance and pattern of regeneration within and across
79	forest gaps (Hibbs, 1982; 1983) and experimental linear openings (Smith and Ashton,
80	1993; Liptzin and Ashton, 1999). In these studies, results show that for oak to be present
81	in a stand it is essential to have it represented as advance regeneration prior to creating a
82	canopy disturbance and that a nearby source of seed is needed for supplemental
83	establishment thereafter (Smith and Ashton, 1993; Liptzin and Ashton, 1999). In
84	addition, studies documenting the cohort dynamics of advance regeneration beneath
85	closed canopied mature forest in southern New England have demonstrated the
86	infrequent and episodic nature of recruitment, with oak showing the greatest variability in

87	masting intervals (>10 y) and amounts, with significantly lower survival in the forest
88	understory of mesic till soils (50% mortality after 4 y) than dry till soils (50% mortality
89	after 8 y) (Ashton and Larson, 1996; Frey et al., 2007).
90	Problems with oak regeneration are likely a result of a combination of factors – an
91	absence of ground story fire and subsistence agriculture (Abrams 1992; Brose et al.,
92	1999; Abrams and Nowacki, 1992), high deer populations (Kittredege and Ashton, 1990;
93	1995); the high shade conditions of forest understories (Ashton and Berlyn, 1994; Ashton
94	and Larson, 1996; Frey et al. 2007), infrequent establishment of oak cohorts (Frey et al.,
95	2007), and a selective harvesting of trees by landowners that disproportionately removes
96	the oak and hence the future seed source (Ward and Barsky, 2000). Literature that has
97	reported on historical composition of forests in southern New England has shown that
98	both prior to colonization (Native American) and the period after of land colonization and
99	subsequent abandonment (1650-1900), disturbance regimes were created that favored a
100	high component of oak (Day, 1953; Patterson and Sassaman, 1988; Abrams, 1992;
101	Whitney, 1994; Foster et al., 2002; Parshall and Foster, 2002).
102	Given its ecological importance as a key component of the southern New England
103	forest type (Abrams, 1992) and as the most important food source and habitat for wildlife
104	(McShea et al., 2007), regeneration methods need to be developed that promote and
105	retain oak. Based on past work by Ward et al. (2005) suggesting that shelterwood
106	treatments were the most viable long-term regeneration method for southern New
107	England forests, this study evaluated several shelterwood treatments to investigate
108	performance of oak on a mesic-till site competitive for black birch, red maple and sugar
109	maple. Treatments included a control (no treatment) that was compared to a uniform

shelterwood; an irregular shelterwood where a proportion of the residual subcanopy was retained; and a group shelterwood in which openings were created that were half the height of the canopy. It was hypothesized that the uniform system would have higher regeneration densities and height growth, and a greater proportion of oak given the higher light conditions compared to the other treatments. It was also hypothesized that treatments maintaining a greater overstory basal area (group, irregular shelterwood) would promote proportionately higher densities and height growth of red maple and sugar maple, which are considered more shade tolerant (Burns and Honkala, 1990) METHODS **METHODS** Site description This study was conducted at the Yale Myers Forest (41° 57' N, 72° 07'W) located in northeastern Connecticut. This region is characterized by undulating ridge-valley topography ranging from 200-350 meters above sea level, an ancient geological landform comprised of schist-gneiss of metamorphic origin. The climate is cool temperate, with an annual rainfall of 1125mm, a mean summer temperature of 20°C, and a mean winter temperature of -4°C (Meyer and Plusnin, 1945). The forest is situated in a transition zone between the central hardwood of south coastal New England and the mixed hardwood-pine-hemlock forest of central New England (Westveld, 1956). The dominant canopy trees are red oak, red maple, sugar maple, black birch, hemlock (*Tsuga canadensis* L. Carriere) and white pine (*Pinus strobus* L.). Because of the variable till soils, undulating topography, and history of heavy land use and disturbance, the average stand size with

uniform site, species composition and land use/disturbance history is about 2-4 ha (Yale
Forest Records, 2000). This creates a very heterogeneous forest that characterizes much
of southern New England (Meyer and Plusnin, 1945; Whitney, 1994).

Regeneration treatments for the study were undertaken in an even-aged 100 y old closed canopy forest (with occasional wolf trees) that succeeded from old-field pine that was cut out in the early 1900's and that originated on an old unimproved pasture in around 1850. The site is a mid-slope bench (slope 10-15%) with a northeast aspect. The soils are comprised of the Charlton-Chatfield series and can be considered the dominant upland mesic-till soil within the forest study site (Soil Conservation Service, 1975; 1981). These soils are very representative of both the eastern and western upland physiographic provinces of southern New England.

145 Experimental design

The original stand basal area comprised an oak canopy, with a subcanopy of red maple, black birch, sugar maple and some hemlock The stand also had occasional wolf trees of sugar maple and beech over 250 years old (Table 1). The development of the stand has been described by studies done in an adjacent area with a similar history and species composition (Oliver, 1978). Here several stem analysis and oak spacing studies have been done that showed that after the pine was cutover, sprout-origin red maple was the first to attain the regenerating forest canopy, interspersed by black birch (Oliver, 1978). Red oak did not attain the canopy until year 40, with the red maple and black birch receding to the subcanopy. Sugar maple has continuously grown slowly upward but still remains today in the subcanopy (Oliver, 1978; Kittredge, 1988).

Page 7 of 32

Journal of Sustainable Forestry

1	56	In 1998, three experimental shelterwood treatments were established (Fig.1).
1	57	Treatments included: 1.) a uniform shelterwood in which mature canopy dominant oak
1.	58	trees (mean dbh = 60 cm) were left at 12-18 m spacing, with occasional single tree
1	59	reserves that were either sub-canopy red maple (5-7 ha ⁻¹), or wolf trees (sugar maple,
1	60	beech, 2.5 ha ⁻¹); 2.) an irregular shelterwood which maintained the same overstory oak
1	61	spacing as the uniform shelterwood along with wolf trees and subcanopy reserves of red
1	62	maple and black birch, but which retained a higher number of single tree subcanopy
1	63	reserves primarily of sugar maple (mean dbh = 20 cm; 40 ha ⁻¹); 3.) a group shelterwood
1	64	treatment where openings were created that had a diameter (based on canopy crown
1	65	projection to the ground) equivalent to canopy height (22.5m), in which all trees >5 cm
1	66	dbh were removed; and 4.) a control where the original stand was left untreated. Each
1	67	treatment area comprised 2.4 ha (total area ~ 10 ha) in which every tree over 5cm dbh was
1	68	stem mapped. Treatment areas were oriented perpendicular to the slope (SE-NW) and
1	69	adjacent to each other as 150m x 150m blocks.
1	70	Harvest treatments were created in the winter of 1998-1999, when the ground was
1	71	frozen, using a TIMCO feller-buncher for all trees less than 40cm dbh. The larger trees
1	72	were hand felled using a chainsaw. All trees were directionally felled, limbed and bucked
1	73	on site, and the slash crushed to the ground (<1m height) and dispersed. Merchantable
1	74	logs were carried off site using a forwarder.
1	75	
1	76	Measurements
1	77	Within each treatment area, four 40m long transects were established, 20m apart and
1	78	perpendicular to the slope. Each transect had four circular plots spaced at 10m intervals.

179	Plots were centered on PVC pipe and sampled a $1m^2$ area. Within each plot, all seedlings
180	were recorded by species and measured for height. Measurements were made pre-
181	treatment (1998), and then in 1999, 2003, and 2006. Seedlings were also measured for
182	root-collar diameter using a digital caliper. A complete inventory of red maple stump
183	sprouts (the only species to stump-sprout post-treatment) was undertaken within each
184	treatment unit in 2006 to determine sprout density and height growth.
185	Tree dbh was recorded for the overstory canopy tree species using fixed area plots
186	(15m radius) positioned at the PVC plot centers. Measurements were taken both pre-
187	treatment (1998) and post-treatment (1999 and 2006).
188	
189	Data analysis
190	All analyses were performed using transects as the sampling unit, with plots treated as
191	subsamples. Statistical analyses of composition of regeneration using density, aggregate
192	height (Fei et al., 2006), and root collar basal area was performed using a permutational
193	multivariate analysis of variance approach (Anderson, 2001; McArdle and Anderson,
194	2001). This method uses a chosen distance measure and permutational procedures to
195	produce p-values and test significance of main effects and interactions, and generate pair-
196	wise multiple comparisons. The software package PERMANOVA (Anderson, 2001) was
197	used for these tests, using Bray-Curtis distance measures, on 1000 permutation and pair-
198	wise multiple comparisons. Analyses were conducted separately for seedling density,
199	height, and root collar diameter. Data were square root transformed to improve
200	normality. Means were compared using pair-wise tests generated by permutational
201	procedures. All tests were evaluated at a level of significance of α =0.05.

202	To assess density and growth (mean height and root collar diameter) for
203	individual species we used a simple analysis of variance (PROC GLM, SAS (2006)).
204	Tukey's HSD test was used for multiple comparisons of treatment effects where the
205	overall model was significant. In addition, analysis of temporal recruitment patterns was
206	performed for individual species using a repeated measures analysis of variance (PROC
207	GLM, SAS (2006)) using both univariate and multivariate approaches. Recruitment data
208	were square root transformed to improve normality. Results were evaluated based on
209	both methods, and where sphericity assumptions were violated the Huynh-Feldt adjusted
210	p-values were used.
211	
212	RESULTS
213	
214	Composition and density
215	Overall, eight years after the shelterwood treatments, seedling regeneration was
216	dominated by red oak, followed by black birch, red maple, and sugar maple (Table 2).
217	However, differences in species composition were evident between treatments (Table 3).
218	Compositional differences were particularly apparent between the uniform and irregular
219	treatments compared to the group shelterwood and the uncut control. The uniform and
220	irregular treatments had higher black birch and red oak densities (10 and 2-3 times
221	
	greater, respectively) but lower red maple seedling densities (less than half) compared to
222	greater, respectively) but lower red maple seedling densities (less than half) compared to the group and control. Red maple sprout densities were highest in the uniform
222 223	

densities were intermediate in the irregular shelterwood, infrequent in the groupshelterwood, and non-existent in the control.

227 Height and root collar diameter

There was strong canopy stratification among species in height growth eight years after the initial shelterwood treatments (Table 3, Fig. 2a, b). In general, red maple sprouts formed the tallest strata, two to three times taller than black birch, which average 2-5 times the height of associated seedlings of red maple, red oak, and sugar maple. Height stratification and overall height growth among all species increased from control, to group, to irregular, to uniform treatment as amount of basal area removed and canopy opening increased.

Basal area based on root collar diameters differed somewhat from height patterns (Fig. 2c). Black birch dominated the uniform and irregular treatments, where it occurred in high densities. Red maple sprout basal area was approximately 25% of black birch, its much lower densities compensated by vigorous growth by individual sprouts. Red oak basal area was significantly lower than both the birch and red maple sprouts in the uniform and irregular treatments. Red oak was followed by sugar maple and red maple seedlings in the uniform and irregular treatments.

Basal area for all species was reduced substantially in the group shelterwood, and relative basal areas of black birch and red maple declined dramatically such that there were no differences evident. This was also true in the control, where the low stature of all species resulted in negligible measurements of basal area.

248

Recruitment

1

Regeneration densities varied in time, generally increasing following the shelterwood

2	
3	
Δ	
т 5	
5	
0	
1	
8	
9	
10	
11	
12	
13	
11	
14	
10	
16	
17	
18	
19	
20	
21	
22	
23	
2 3 4 5 6 7 8 9 10 1 12 3 14 5 16 7 10 12 10 10 10 10 10 10 10 10 10 10 10 10 10	
24	
20	
20	
27	
28	
29	
30	
31	
32	
33	
31	
25	
30	
30	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	
59 60	
60	

249	treatments, although patterns differed between species (Fig. 3, Table 4). Sharp increases
250	in black birch and red oak recruitment were evident, certainly reflecting increased
251	opportunities for new seedling establishment with canopy opening. However, the increase
252	in red oak densities across all treatments (including the control) was attributable to a mast
253	year that occurred in these stands in 2002 (Frey et al., 2007), four years after shelterwood
254	treatment. By 2004 (5 years after treatment), seedling densities for red oak and black
255	birch had peaked and were declining as the regenerating stands began to thin. Sugar
256	maple densities continued to increase over the study period, also attributable to a series of
257	mast events in 2004, and 2006 (Frey et al., unpublished data).
258	
259	DISCUSSION
239	DISCUSSION
260	DISCUSSION
	Divergent regeneration patterns were evident among the different shelterwood treatments.
260	
260 261	Divergent regeneration patterns were evident among the different shelterwood treatments.
260 261 262	Divergent regeneration patterns were evident among the different shelterwood treatments. The uniform shelterwood, and to a lesser degree the irregular shelterwood, was
260 261 262 263	Divergent regeneration patterns were evident among the different shelterwood treatments. The uniform shelterwood, and to a lesser degree the irregular shelterwood, was characterized by vigorous regrowth of oak's key competitors, black birch and red maple.
260 261 262 263 264	Divergent regeneration patterns were evident among the different shelterwood treatments. The uniform shelterwood, and to a lesser degree the irregular shelterwood, was characterized by vigorous regrowth of oak's key competitors, black birch and red maple. Early dominance by birch and maple following canopy removal is typical in southern
260 261 262 263 264 265	Divergent regeneration patterns were evident among the different shelterwood treatments. The uniform shelterwood, and to a lesser degree the irregular shelterwood, was characterized by vigorous regrowth of oak's key competitors, black birch and red maple. Early dominance by birch and maple following canopy removal is typical in southern New England hardwood forests (Oliver, 1978; Oliver and Stephens, 1977; Smith and
260 261 262 263 264 265 266	Divergent regeneration patterns were evident among the different shelterwood treatments. The uniform shelterwood, and to a lesser degree the irregular shelterwood, was characterized by vigorous regrowth of oak's key competitors, black birch and red maple. Early dominance by birch and maple following canopy removal is typical in southern New England hardwood forests (Oliver, 1978; Oliver and Stephens, 1977; Smith and Ashton, 1993; Liptzin and Ashton, 1998). Black birch is a vigorous, light-seeded pioneer

primarily dominated by stump sprouting, which responded rapidly to canopy opening (Fei and Steiner, 2009) and formed an upper stratum above the black birch, but with a highly clumped spatial distribution reflective of its pre-disturbance distribution in the stand (Beck and Hooper, 1986). Red maple regeneration was most vigorous in the uniform treatment. Increasing light and resource levels associated with increased canopy removal favor competing vegetation (e.g. Frey et al., 2003), and likely enhanced the vigor of oak's competitors in the uniform, and to lesser extent the irregular, shelterwood treatment. A matrix of birch with clumped distribution of overtopping red maple represents the competitive environment in which red oak develop in southern New England hardwood stands (Oliver, 1978). Density of red oak regeneration, like the birch and maple, increased with canopy removal. Oak recruitment and establishment events are characteristically irregular and unpredictable owing to masting behaviour, but a mast year in 2002 (Frey et al., 2007) and possibly enhanced acorn production by residual trees (Healy et al., 1999), supplemented the sparse advance regeneration and contributed to increased oak establishment in the shelterwood stands and the undisturbed control. Densities were highest in the uniform and irregular shelterwoods. While oaks are understood to lag behind red maple and black birch in height growth during early development (Oliver, 1978), the red oak component in this study lagged far behind in height. This may be attributable to the relatively low densities of advance regeneration of red oak prior to cutting, as vigorous established red oak are widely understood to be necessary for successful oak regeneration following disturbance (e.g. Loftis, 1990). In northern oak forests (northern Appalachians, central hardwoods) high densities of seedlings may compensate for smaller stature in

Page 13 of 32

Journal of Sustainable Forestry

1	2
	3

293	determining successful oak regeneration following regeneration treatments (Ward and
294	Stephens, 1999; Fei al., 2005). It seems likely that a sparse cohort of advance
295	regeneration, most of which originated from a 1993 mast year (Frey et al. 2007), and a 3-
296	year lag in subsequent oak recruitment following harvest, has put oak regeneration in an
297	apparently weak competitive position. Other studies on drier till sites, where laurel
298	(Kalmia latifolia L.) is an understory competitor for growing space with oak
299	regeneration, have shown that shelterwoods timed to groundstory burns are very effective
300	at releasing oak advance regeneration (Moser et al., 1996). However, it remains to be
301	seen whether mesic sites can be managed in this way. Lastly, plantings of red oak with
302	the use of shelters, once thought a potential satisfactory way of supplementing oak
303	advance regeneration, have been shown to almost completely fail (Kittredge et al., 1992).
304	The group shelterwood was characterized by a marked reduction in the
305	development of oak's competitors. Poor development of a black birch and red maple
306	stratum may have reflected a poor light environment, or some other microclimatic factor
307	(e.g. temperature). Not surprisingly the red oak component did not exhibit elevated
308	growth, but did appear to be growing as favorably in the group shelterwood as in the
309	more open uniform and irregular treatments. The net effect is that the relative
310	competition has been greatly reduced for red oak in this treatment. This "femelschlag"
311	(expanding gap) approach has been developed in German forests to favor the
312	development of vigorous regeneration before subsequent removal of the adjacent stand
313	(Puettmann et al., 2009). It appears that smaller gaps, though seemingly unfavorable to
314	the growth of relatively shade intolerant red oaks, may be advantageous to oak species
315	that show persistent survival in shaded conditions (Frey et al., 2007). Indeed, if this

316	treatment favors more vigorous development of oak advance regeneration while limiting
317	the development of competitors, it may greatly improve successful oak development
318	when subsequent treatments remove the adjacent overstory.

MANAGEMENT IMPLICATIONS

Shelterwood regeneration methods, which release advance regeneration of oak, are widely perceived to be the optimal approach for securing oak in hardwood stands. Where advance regeneration of oak is limited or lacking, shelterwood treatments such as the uniform and irregular treatments that remove a significant portion of the basal area will increase light and resource levels and thereby favor growth of competitors, such as black birch and red maple, which can rapidly colonize the site. Even with subsequent masting and establishment events increasing the oak seedling densities, it appears unlikely that oak will readily close the growth deficit. This suggests that regeneration cuttings either need to be more opportunistically timed to take advantage of seedling establishment events, or alternatively that follow up release treatments such as cleaning be employed to reduce red maple and black birch competition around individual oak seedlings.

Another alternative suggested by this study is to open the canopy more slowly to limit the development of competitors. Where advance regeneration is poorly established, shelterwood treatments that control competition and extend the window for oak establishment may be very advantageous. The group shelterwood limits the birch and red maple development, while maintaining a cohort of red oak that is likely to be more competitive upon release. The group shelterwood may thus be a viable approach to

1 2		
3 4	339	developing red oak, particularly given unpredictable seed production and where more
5 6 7	340	intensive follow-up treatments are not logistically or economically viable.
7 8 9	341	
9 10 11 12 13 14 5 6 7 8 9 0 12 23 24 5 6 7 8 9 0 12 33 4 5 6 7 8 9 0 12 23 24 5 6 7 8 9 0 12 33 4 5 6 7 8 9 0 12 23 4 5 6 7 8 9 0 12 3 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	342	

3	43	REFERENCES
3	44	Abrams, M.D. (1992). Fire and the development of oak forests. Bioscience, 42, 346-353.
3	45	Abrams, M.D., & Nowacki, G.J. (1992). Historical variation in fire, oak recruitment, and
3	46	post-logging accelerated succession in central Pennsylvania. Bulletin of the Torrey
3	47	Botanical Club, 119, 19-28.
3	48	Anderson, M.J. (2001). A new method for non-parametric multivariate analysis of
3	49	variance. Austral Ecology, 26, 32-46.
3	50	Ashton, P.M.S., & Berlyn, G.P. (1994). A comparison of leaf physiology and anatomy of
3	51	Quercus (section Erythrobalanus) species in different light environments. American
3	52	Journal of Botany, 81, 589-597.
3	53	Ashton, P.M.S., & Larson, B.C. (1996). Germination and seedling growth of Quercus
3	54	(section Erythrobalanus) across openings in a mixed-deciduous forest of southern
3	55	New England, USA. Forest Ecology and Management 80, 81-94.
3	56	Beck, D.E., & Hooper, R. M. (1986). Development of a southern Appalachian hardwood
3	57	stand after clearcutting. Southern Journal of Applied Forestry, 10, 168–172.
3	58	Brose, P., Van Lear, D., & Cooper, R. (1999). Using shelterwood harvests and prescribed
3	59	fire to regenerate oak stands on productive upland sites. Forest Ecology and
3	60	Management, 113, 125-141.
3	61	Burns, R.M., & Honkala, B.H. (1990). Silvics of North America, Volume 2, Hardwoods.
3	62	USDA Forest Service Agriculture Handbook No. 654. U.S. Government Printing
3	63	Office, Washington, D.C. 886 p.
3	64	Carvell, K.L., & Tryon, E.H. (1961). The effect of environmental factors on the
3	65	abundance of oak regeneration beneath mature oak stands. Forest Science, 7, 98-105.

	_
1	7
T	1

366	Catovsky, S., & Bazzaz, F.A. (2000). The role of resource interactions and seedling
367	regeneration in maintaining a positive feedback in hemlock stands. Journal of
368	Ecology, 88, 100-112.
369	Day, G. (1953). The Indian as an ecological factor in the Northeastern forests. Ecology,
370	34, 329-346.
371	Fei, S., & Steiner, K.C. (2009). Rapid capture of growing space by red maple. Canadian
372	Journal of Forest Research, 39, 1444-1452.
373	Fei, S., Gould, P. J. Steiner, K. C., Finley, J. C., & McDill, M. E. (2005). Forest
374	regeneration composition and development in upland, mixed-oak forests. Tree
375	Physiology, 25, 1495–1500.
376	Fei, S., Gould, P. J. Steiner, K. C., & Finley, J. C. (2006). Aggregate height – a
377	composite measure of stand density for tree seedling populations. Forest Ecology and
378	Management, 223, 336-341.
379	Foster, D.R., Clayden, S., Orwig, D.A., Hall, B., & Barry, S. (2002). Oak, chestnut and
380	fire: climatic and cultural controls of long-term forest dynamics in New England,
381	USA. Journal of Biogeography, 29, 1359–1379.
382	Frey, B.R., Ashton, M.S., McKenna, J.J., Ellum, D., & Finkral, A. (2007). Topographic
383	and temporal patterns in tree seedling establishment, growth, and survival among
384	masting species of southern New England mixed-deciduous forests. Forest Ecology
385	and Management, 245, 54-63.
386	Frey, B.R, Lieffers, V.J., Munson, A.D. & Blenis, P.V. (2003). The influence of partial
387	harvesting and forest floor disturbance on nutrient availability and understory
	 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386

vegetation in boreal mixedwoods. Canadian Journal of Forest Research 33, 1180-1188. Healy, W.M., Lewis, A.M., & Boose, E.F. (1999). Variation of red oak acorn production. Forest Ecology and Management, 116, 1-11. Hibbs, D. E. (1982). Gap dynamics in a hemlock-hardwood forest. Canadian Journal of Forest Research, 12, 522-527. Hibbs, D.E. (1983). Forty years of forest succession in central New England. Ecology, 64.1394–1401. Kays, J. S., Smith, D.W., Zedaker, S.M., & Kreh, R. E. (1988). Factors affecting natural regeneration of Piedmont hardwoods. Southern Journal of Applied Forestry, 12, 98-102. Kelty, M.J., & Nyland, R. D. (1981). Regenerating Adirondack northern hardwoods by shelterwood cutting and control of deer density. Journal of Forestry, 79, 22–26. Kittredge, D.B. (1988). The influence of species composition on the growth of individual red oaks in mixed stands in southern New England. Canadian Journal of Forest Research, 18, 1550-1555. Kittredge, D.B., & Ashton, P.M.S. (1990). Patterns of regeneration in mixed-species stands in southern New England. Northern Journal of Applied Forestry, 5,132-144. Kittredge, D.B., & Ashton, P.M.S. (1995). Impacts of deer browse on regeneration in mixed-species stands in southern New England. Northern Journal of Applied Forestry, 12, 115-120.

ge 19 of 32	Journal of Sustainable Forestry
	19
409	Kittredge, D.B., Kelty, M.J., & Ashton, P.M.S. (1992). The use of tree shelters with
410	northern red oak in southern New England. Northern Journal of Applied Forestry, 9,
411	141-145.
412	Liptzin, D., & Ashton, P.M.S. (1999). Early successional stand dynamics of single-
413	aged mixed hardwood stands in a southern New England forest, USA. Forest Ecology
414	and Management, 116, 141-150.
415	Loftis, D.L. (1983). Regenerating southern Appalachian mixed hardwood stands with the
416	shelterwood method. Southern Journal of Applied Forestry, 7, 212-217.
417	Loftis, D.L. (1985). Preharvest herbicide treatment improves regeneration in southern
418	Appalachian hardwoods. Southern Journal of Applied Forestry, 9, 177-180.
419	Loftis, D.L. (1990). A shelterwood method for regenerating red oak in the southern
420	Appalachians. Forest Science, 36, 917-929.
421	Lorimer, C.G. (1993). Causes of the oak regeneration problem. P. 14-39 in Proceedings
422	Oak Regeneration: serious problems, practical recommendations. Knoxville,
423	Tennessee. Loftis, D., and McGee, C., Eds. USDA Forest Service General Technical
424	Report SE-84.
425	McArdle, B.H., & Anderson, M.J. (2001). Fitting multivariate models to community
426	data: a comment on distance-based redundancy analysis. Ecology 82, 290-297.
427	McShea, W.J., Healy, W.M., Devers, P., Fearer, T., Koch, F.H., Stauffer, D. et al. (2007).
428	Forestry matters: decline of oaks will impact wildlife in hardwood forests. Journal of
429	Wildlife Management, 71, 1717-1728.

430	Meyer, W.H., & Plusnin, B. (1945). The Yale Forest in Tolland and Windham Counties.
431	Yale University School of Forestry and Environmental Studies Bulletin 55. Yale
432	School of Forestry and Environmental Studies, New Haven, CT. 54 p.
433	Moser, W.K., Ducey, M.J., & Ashton, P.M.S. (1996). Effects of fire intensity on
434	competitive dynamics between red and black oaks and mountain laurel. Northern
435	Journal of Applied Forestry, 13, 112-118.
436	Oliver, C. D. (1978). The development of northern red oak in mixed stands in central
437	New England. Yale University School of Forestry and Environmental Studies
438	Bulletin 63. Yale School of Forestry and Environmental Studies, New Haven, CT. 63
439	р.
440	Oliver, C. D., & Stephens, E. P. (1977). Reconstruction of a mixed-species forest in
441	Central New England. Ecology, 58, 562-572.
442	Parker, G. R., & Swank, W.T. (1982). Tree species response to clear-cutting a Southern
443	Appalachian watershed, American Midland Naturalist, 108, 304–310.
444	Parshall, T, & Foster, D.R. (2002). Fire on the New England landscape: regional and
445	temporal variation, cultural and environmental controls. Journal of Biogeography, 29,
446	1305–1317.
447	Patterson, W.A., & Sassaman, K.E. (1988). Indian fires in the prehistory of the Northeast.
448	In: Nicholas, G.P., ed. Holocene human ecology in northeastern North America. New
449	York: Plenum Publishing: 107-135.
450	Puettmann, K.J., D'Amato, A.W., Kohnle, U., & Bauhus, J. (2009). Individual-tree
451	growth dynamics of mature Abies alba during repeated irregular group shelterwood
452	(Femelschlag) cuttings. Canadian Journal of Forest Research, 39, 2437-2449.

2		
- 3 4	453	SAS. 2006. User's guide version 9.1.3. SAS Institute Inc., Cary, North Carolina, USA.
5 6	454	Schuler, T.M., & Miller, G.W. (1995). Shelterwood treatments fail to establish oak
7		
8 9	455	reproduction on mesic forest sites in West Virginia – 10 year results. P. 375-387 in
10 11	456	Proceedings, 10th Central hardwood forest conference, March 1995, Morgantown
12 13	457	WV. USDA Forest Service General Technical Report NE 197.
14 15 16	458	Smith, D.M., & Ashton, P.M.S. (1993). Early dominance of pioneer hardwoods after
17 18	459	clearcutting and removal of advanced regeneration. Northern Journal of Applied
19 20	460	Forestry, 10, 14-19.
21 22	461	
23	461	Smith, H.C., & Miller, G.W. (1987). Managing Appalachian hardwood stands using four
24 25	462	regeneration practice34-year results. Northern Journal of Applied Forestry4, 180-
26 27 28	463	185.
29 30	464	Soil Conservation Service. (1975). Soil taxonomy: A basic system of soil classification
31 32	465	for making and interpreting soil surveys. Agricultural Handbook No. 436. U.S. Gov.
33 34 25	466	Print. Office, Washington, DC. 754 p.
35 36 37	467	Soil Conservation Service. (1981). Soil survey of Windham County, Conn. USDA Soil
38 39	468	Conservation Service, Washington, DC. 130 p.
40		
41 42	469	Steiner, K.C., Finley, J.C., Gould, P.J., Fei, S., & McDill, M. (2008). Oak regeneration
43 44	470	guidelines for the central Appalachians. Northern Journal of Applied Forestry, 25, 5-
45 46	471	16.
47 48 49	472	Tryon, E. H., & Carvell, K. L. (1958). Regeneration under oak stands. West Virginia
50 51	473	University Agricultural Experiment Station Bulletin 424T. 22 p.
52 53	474	Ward, J.S., & Barsky, J.P. (2000). Connecticut's changing forest. Connecticut
54 55 56	475	Woodlands, 65, 9-13.
57 58		

2
3
1
-
5
6
7
8
0
9
10
11
12
12
13
14
15
16
17
17
18
19
20
21
21
2 3 4 5 6 7 8 9 10 1 12 13 14 15 6 7 8 9 10 1 12 13 14 15 6 7 8 9 21 22 32 4 5 6 7 8 9 33 33 34 5 6 7 8 9 0 11 2 3 34 5 6 7 8 9 0 11 2 3 34 5 6 7 8 9 0 11 2 3 34 5 6 7 8 9 0 11 2 3 3 4 5 6 7 8 9 0 11 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
23
24
25
20
26
27
28
20
23
30
31
32
33
24
34
35
36
37
20
30
39
40
41
42
43
44
45
46
40
47
48
49
50
50
51
51 52 53 54
53
54
57
55
56
57
58
50
59
60

476 Ward, J.S., & Stephens, G.R. (1993). Influence of crown class and shade tolerance on

- 477 individual tree development during deciduous forest succession in Connecticut, USA.
- 478 Forest Ecology and Management, 60, 207-236.
- 479 Ward, J.S., & Stephens, G.R. (1994). Crown class transition rates of maturing northern

480 red oak (*Quercus rubra* L.). Forest Science, 40, 221-227.

481 Ward, J.S., & Stephens, G.R. (1996). Influence of crown class on survival and

482 development of *Betula lenta* in Connecticut, USA. Canadian Journal of Forest

- 483 Research, 26, 277-288.
 - 484 Ward, J.S., & Stephens, G.R. (1999). Influence of cutting methods on 12-year-old
- 485 hardwood regeneration in Connecticut. P. 204-208 in Proceedings of the 12th Central
- 486 Hardwood Forest Conference, Stringer, J. W., Loftis, D.L. (eds.). USDA For. Serv.
- 487 Gen. Tech. Rep. SRS-24.
 - 488 Ward, J.S., Stephens, G.R. & Francis, F. (2005). Influence of cutting method on stand
 - 489 growth in sawtimber oak stands. Northern Journal of Applied Forestry, 22, 59-67.
- 490 Whitney, G.G. (1994). From coastal wilderness to fruited plain. Cambridge, U.K:

491 Cambridge University Press. 451 p.

- 492 Westveld. M. (1956). Natural Forest Vegetation Zones of New England. Journal of
- 493 Forestry, 54, 332-338.
- 494

495	List of Tables:
496	
497	Table 1. Stand characteristics for different shelterwood stands pre (1998) and post (1999)
498	treatment. 1a. Stand basal area by species (m ² /ha). 1b. Stand density by species
499	(stems/ha). Other = American beech, black cherry (<i>Prunus serotina</i> Ehrh.), basswood
500	(<i>Tilia americana</i> L.); Subcanopy = musclewood (<i>Carpinus caroliniana</i> Walt.), hop
501	hornbeam (Ostrya virginiana P. Mill.).
502	
503	Table 2. Regeneration densities (stems/ha) for seedling and sprout regeneration. Mean
504	and standard error (SE) provided for pre-harvest (1998) and 8-years post-harvest (2006).
505	
506	Table 3. Permutational multivariate analysis of variance (PERMANOVA) for seedling
507	composition between shelterwood treatments, based on density, aggregate height, and
508	basal area (root collar). Data represent p-values; significant effects are in bold, multiple
509	comparisons are not adjusted.
510	
511	Table 4. Results of repeated measures analysis of variance for recruitment over study
512	period. S=species, Tr=shelterwood treatment, T=time, df=degrees of freedom, SS=sum of
513	squares, Pr=probability, H-F=Huynh-Feldt correction.
514	
515	

List of Figures:

Figure 1. Representation of the stand type and composition and the different shelterwood treatments applied in the study. Stand conditions are represented as 'Past', 'Present', and 'Future', corresponding to a) preharvest conditions, b) the initial regeneration cut of the shelterwood treatment as measured in this study, and c) the final overstory removal. Figure 2. Mean height, maximum height, and root collar basal area by species for sprout and seedling regeneration 8 years after treatment. BB = black birch, RM = red maple, RO = red oak, and SM = sugar maple. Letters over columns depict differences among treatments for each species (a > b > c) at P=0.05. No letters were provided where there were no differences across treatments. Note the different scales. Figure 3. Seedling recruitment patterns pre- and post-treatment by species. BB = black birch, RM = red maple, RO = red oak, and SM = sugar maple. Note the different scales.

533 Table 1.

1a. Basal area (m²/ha)

	<u>Uniform</u>		<u>Irregular</u>		<u>Group</u>		<u>Control</u>
<u>Species</u>	<u>1998</u>	<u>1999</u>	<u>1998</u>	<u>1999</u>	<u>1998</u>	<u>1999</u>	<u>1998</u>
Black birch	4.22	0.17	1.29	0.00	0.51	0.52	4.58
Hemlock	4.68	1.40	0.33	0.00	0.86	0.87	3.12
Other	0.14	0.00	0.21	0.19	0.00	0.00	0.54
Paper birch	0.15	0.00	0.00	0.00	0.00	0.00	1.06
Red maple	3.88	0.60	2.86	0.08	3.61	2.17	4.78
Red oak	13.90	6.46	21.16	8.94	12.10	7.41	15.78
Sugar maple	2.72	2.89	3.27	1.91	4.42	4.30	1.28
Subcanopy	0.02	0.00	0.00	0.03	0.11	0.00	0.01
White ash	1.29	0.00	0.39	0.40	1.48	0.96	0.00
White pine	0.00	0.00	1.09	1.13	0.00	0.00	0.00
TOTAL	31.01	11.51	30.60	12.67	23.09	16.22	31.17

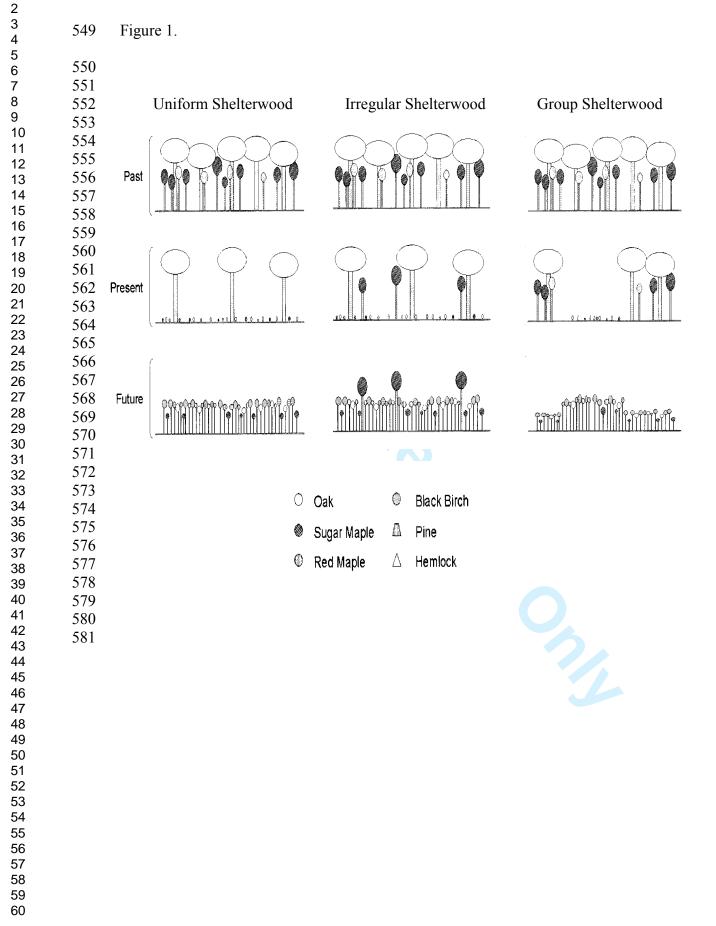
537 Table 1.

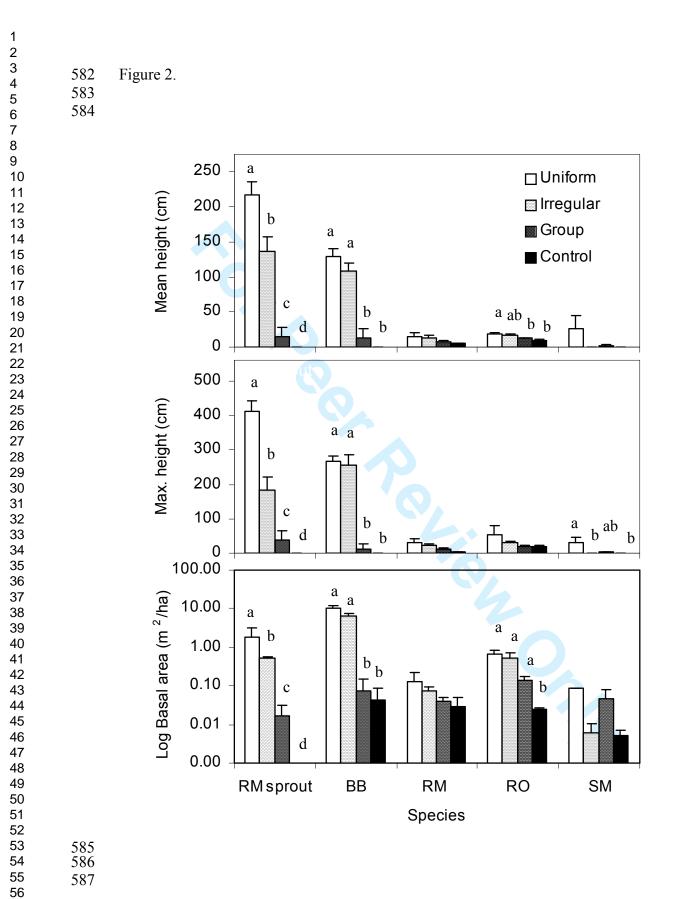
1b. Density (stems/ha)

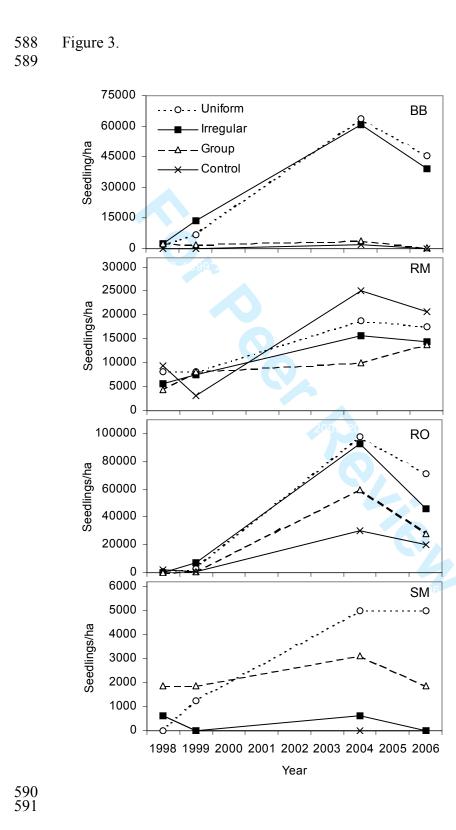
<u>Uniform</u>		Irregul	<u>Irregular</u>		<u>p</u>	<u>Control</u>	
<u>1998</u>	<u>1999</u>	<u>1998</u>	<u>1999</u>	<u>1998</u>	<u>1999</u>	<u>1998</u>	
88	4	31	4	19	19	138	
77	19	4	0	8	8	50	
8	0	8	8	0	0	42	
4	0	0	0	0	0	27	
207	19	177	19	200	119	219	
107	46	173	58	69	42	119	
299	42	392	276	434	250	265	
4	0	0	0	12	0	4	
8	0	8	8	54	35	(
0	0	4	4	0	0	(
802	131	795	376	795	472	864	
	1998 88 77 8 4 207 107 299 4 8 0	1998199988477198040207191074629942408000	$\begin{array}{c cccccc} \underline{1998} & \underline{1999} & \underline{1998} \\ \\ \hline 88 & 4 & 31 \\ \hline 77 & 19 & 4 \\ \hline 8 & 0 & 8 \\ \hline 4 & 0 & 0 \\ \hline 207 & 19 & 177 \\ \hline 107 & 46 & 173 \\ \hline 299 & 42 & 392 \\ \hline 4 & 0 & 0 \\ \hline 8 & 0 & 8 \\ \hline 0 & 0 & 4 \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	199819991998199919981999 88 4 31 41919 77 194088 8 0880040000020719177192001191074617358694229942392276434250400012080885435004400	

541 Table 2.

2006 (8 years post-harvest) Overall Uniform Irregular Group Control SE SE SE SE Mean Mean SE Mean Mean Mean Seedlings/ha Black birch 7730.8 Red maple 13750 6250 13750 5052 Red oak 28125 9540 Sugar maple Other **Red maple sprouts** 103.7 156.8 11.1 Stumps/ha 187.7 80.3 34.6 Sprouts/stump 32.1 2.5 17.3 2.5 4.9 0.0 _ 2494.7 684.2 1378.3 196.4 155.6 Sprouts/ha 0.0


544 Table 3.


	Density	Height	Basal area
vs. Irregular	0.0280	0.3027	0.0799
vs. Group	0.0390	0.0390	0.0390
vs. Control	0.0270	0.0270	0.0270
vs. Group	0.0230	0.0230	0.0230
vs. Control	0.0300	0.0300	0.0300
vs. Control	0.1389	0.3726	0.0250
	vs. Group vs. Control vs. Group vs. Control	vs. Irregular 0.0280 vs. Group 0.0390 vs. Control 0.0270 vs. Group 0.0230 vs. Control 0.0300	vs. Irregular 0.0280 0.3027 vs. Group 0.0390 0.0390 vs. Control 0.0270 0.0270 vs. Group 0.0270 0.0270 vs. Group 0.0230 0.0230 vs. Group 0.0230 0.0230 vs. Control 0.0300 0.0300


546 Table 4.

							H-F	Wilks-		
	Source	df	Type III SS	Mean SS	F	Pr>F	Adj Pr>F	Lambda		
	S	4	347.36	86.84	3.43	0.0144				
	Tr	3	32.5	10.83	0.43	0.7336				
	S*T	12	330.09	27.51	1.09	0.3898				
	Т	5	428.01	107.00	4.59	0.0014	0.0253	< 0.0001		
	T*S	16	1523.26	95.20	4.08	< 0.0001	0.0021	< 0.0001		
	T*Tr	12	319.70	26.64	1.14	0.3438	0.3439	0.2181		
	T*S*Tr	48	703.15	14.65	0.63	0.9716	0.8493	0.2554		
547 548										

URL: http://mc.manuscriptcentral.com/wjsf Email: uromi.goodale@outlook.com

