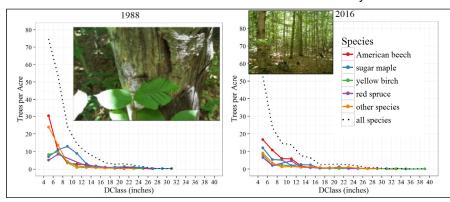


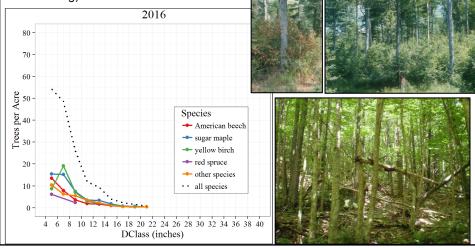
Outline

- Beech control within the context of selection and shelterwood systems
- Ecological forestry approaches
- Irregular shelterwood systems



Beech control within context of regeneration methods

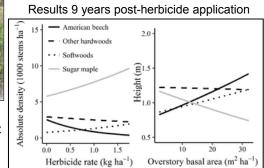
Long-term outcomes of beech control


- · Huntington Wildlife Forest, NY
 - Single-tree selection based on Arbogast structure, 55 ft2/acre
 - · Chemical treatment of understory beech at time of initial cutting
 - · Beech remains dominant in lower size classes after 28 years

Long-term outcomes of beech control

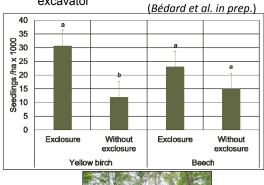
- Huntington Wildlife Forest, NY
 - Uniform shelterwood in 1968, 60 ft²/acre residual BA
 - · Chemical treatment of understory beech at time of establishment cutting

 Yellow birch and sugar maple dominant 48 years later (38 years post-removal cutting)



Long-term outcomes of beech control

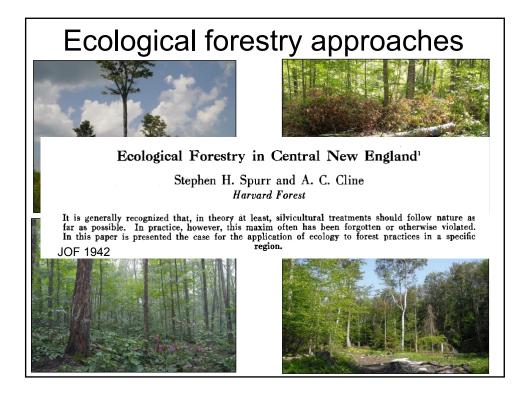
- · North-Central Maine
 - Uniform shelterwood in 2002-2004, 40-87 ft²/acre residual BA
 - · Chemical treatment of beech 2-4 years after establishment cutting
 - · Glyphosate effective at shifting regeneration composition towards sugar maple

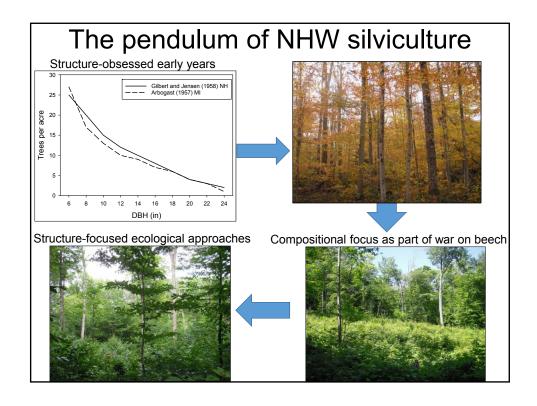

- 1 lb/acre glyphosate (Accord) with 0.5% surfactant (Entrée 5735) most efficient
- High overwood density (> 40 ft²/ac) and browse reducing effectiveness of treatments over time

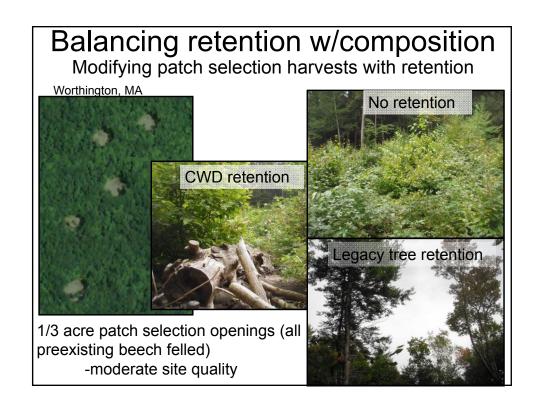
Bose et al. (2017)

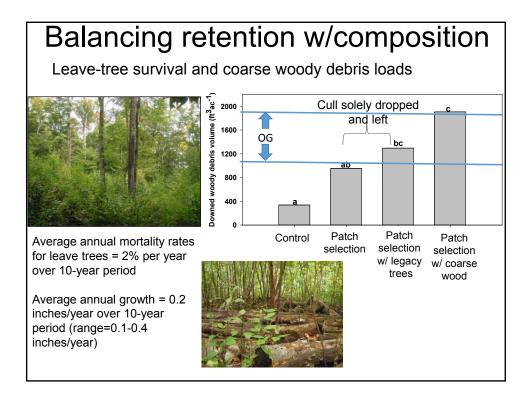
Long-term outcomes of beech control

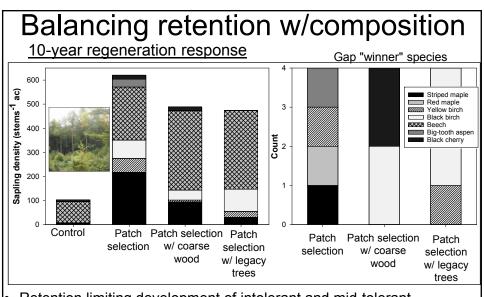
- Eastern Quebec (Duchesnay Forest Station)
 - Group selection harvests 2009 (average opening ¼ acre)
 - Brush saw removal at time of harvest followed by patch scarification with excavator





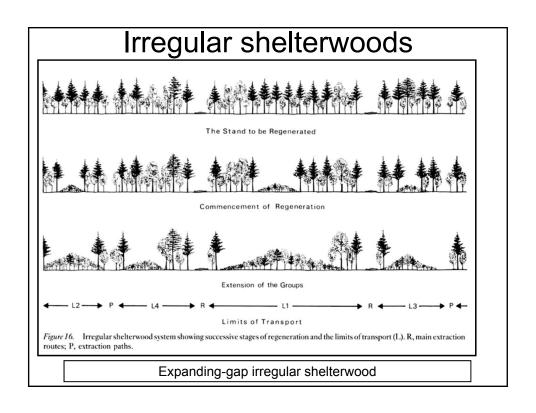

Long-term outcomes of beech control





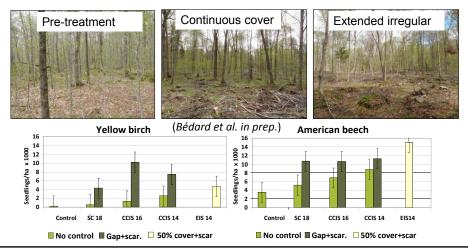
Structural complexity enhancement Jericho and Underhill, VT Selection-based approach using rotated sigmoid target distribution RBA=148 ft²/acre, maximum DBH=35" (all trees above 23" retained due to · Crown release used to accelerate large tree component CWD enhanced via girdling and pulling/pushing over trees Post-harvest downed woody debris Regeneration 13-yrs post treatment Percent Change Keeton (2006) 160 ed 140 ANOVA: P = 0.002Bonferroni Multiple Comparisons: SCE > Control (P < 0.05) SCE > Uneven-aged (P < 0.05) Uneven-aged > Control (P > 0.05) 8000 Saplings (stems/ha) 4000 Structural 2000 Complexity Enhancemen Gottesman and Keeton (2017)

- Retention limiting development of intolerant and mid-tolerant component
 - Dominant sapling height 27 ft with legacy retention vs. 36 ft without
 - Shift towards larger openings or more flexible approach.....



Irregular shelterwoods From Raymond et al. (2009)		
Other names	Bayerischer Femelschlag Acadian Femelschlag Irregular group shelterwood Bavarian shelterwood Coupe progressive irrégulière par trouées agrandies	Badischer Femelschlag Swiss or Baden shelterwood Coupe progressive irrégulière à couvert permanent
Period of regeneration Harvesting pattern Final removal Arrangement of cohorts	> 20% rotation length Group gradually expanded Optional Juxtaposed cohorts New cohort established besides the previous	>20% rotation length Free, single tree, and group No Stratified cohorts New cohort established on the same area than
Vertical structure	one Regular at small scale Single layer Irregular	the previous one Irregular Multiple layers Irregular
Re	Mosaic of cohorts esembles group shelterwood ethod, but has longer generation period Initial groups can focus on areas of advance regeneration or mature patches	Mix of cohorts Resembles hybrid single-tree and group selection cutting Stand must have sufficient AGS to sustain entries over long term (applies to all variants)

Irregular shelterwoods


- Extended irregular shelterwood (syn: shelterwood with reserves)-maintains AGS of large-diameter trees for more than 20% of rotation of new cohort
 - · Results in two-aged stand

Irregular shelterwoods

- Eastern Quebec (Duchesnay Forest Station)
 - Continuous cover irregular shelterwoods as rehabilitation treatments
 - Use of single-tree and group removals with gaps making up no more 30% of area (Target residual BA of 60-70 ft²/ac across unit)
 - Brush saw removal of beech in groups followed by patch scarification with skidder

Conclusions

- Beech control will remain critical consideration in all we do in management of northern hardwoods
 - Particularly important on sites of moderate quality, with high deer densities, and where retention of mature trees is part of regeneration method
- In theory, irregular shelterwood systems provide flexibility to rehabilitate and transform "irregular" stand structures and meet ecological objectives; however, we lack long-term examples of this in practice in NHW
 - Need to prevent making this the "catch all" classification for anything that departs from selection or even-aged systems

