

PM FUNGUS (Erysiphe necator)

- ■Obligate parasite
 - ◆"Eats" only <u>live</u> host tissue (all green tissues), dies without it
 - →Grapes (*Vitis* spp.) + few closely related species
 - Individual PM fungi have limited host range (many plants have their "own" PM)

POWDERY MILDEW: CULTIVAR SUSCEPTIBILITY

- Fungus native to E. North America, hence:
- All *V. vinifera* (European origin) highly susceptible
 - ◆ Chardonnay is a "poster child"
- "Natives", hybrids less susceptible than *V. vinifera*
 - ◆ Great range of S/R, depending on parentage

PM DISEASE CYCLE: OVERWINTERING SOURCE

■ In NE, other cold-winter climates:

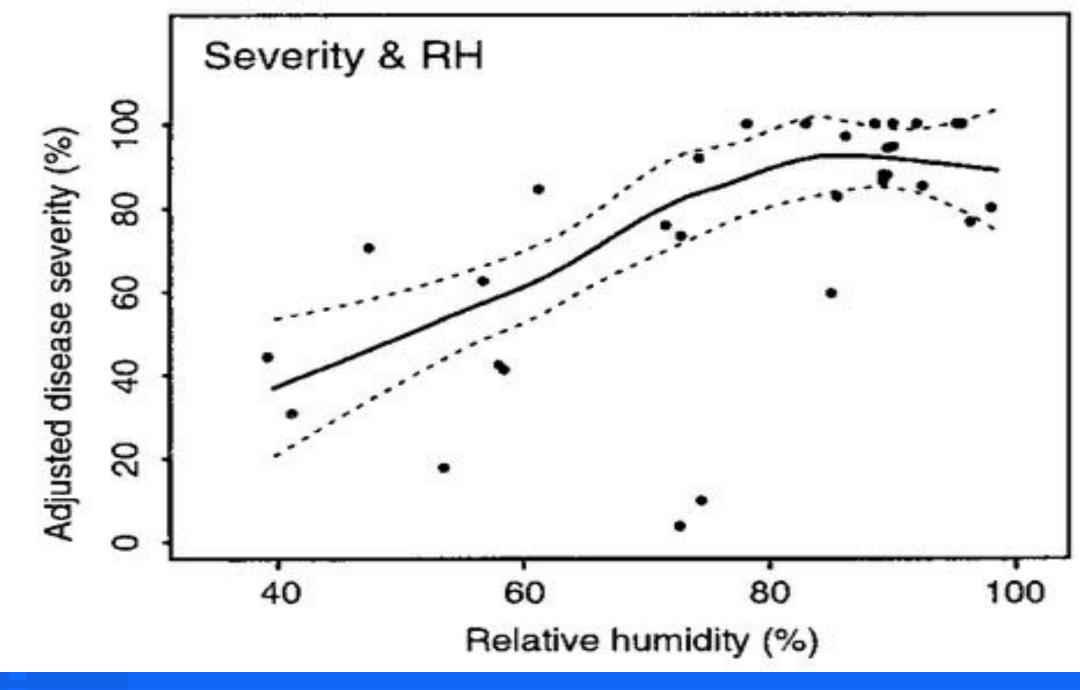
"chasmothecia" (a.k.a. "cleistothecia")—

resting spores on vine surface

POWDERY MILDEW: WHY SO COMMON?

- Unlike other fungal diseases, <u>does not need</u> free water (rain, dew) to cause infection
 - ◆ Temperature is the primary—but not only—environmental factor governing disease development

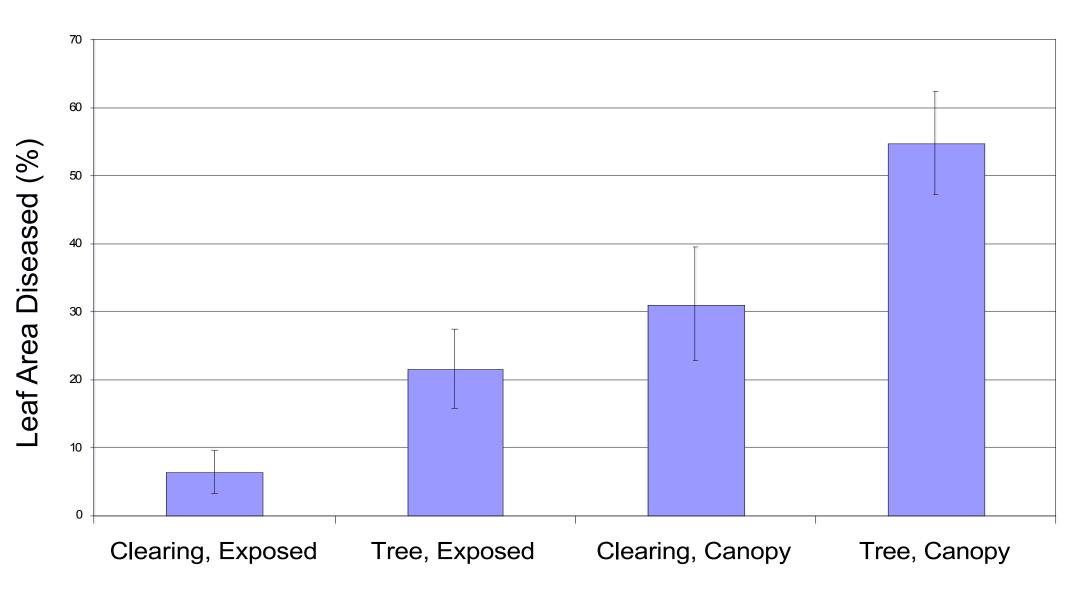
POWDERY MILDEW: EFFECT of TEMPERATURE on DISEASE SPREAD


Temp, °C (°F)	"Generation time" * (days)
8 (48)	25
12 (54)	18
15 (59)	11
17 (63)	7
23 (74)	6
26 (79)	5
30 (86)	6
32 (90)	not active
≥35 (95)	lethal

^{*} Latent period

POWDERY MILDEW: OTHER ENVIRONMENTAL EFFECTS

- Atmospheric humidity
 - ◆Disease often most severe near bodies of water, other vineyard sections subject to high humidity


Carroll, J.E. & Wilcox, W.F. Phytopathology 93:1137-1144 (2003).

POWDERY MILDEW: OTHER ENVIRONMENTAL EFFECTS

- ■Sunlight Exposure
 - ◆Disease much more severe on shaded tissues
 - →Inside dense canopies
 - → Near trees
 - →Prolonged cloudiness

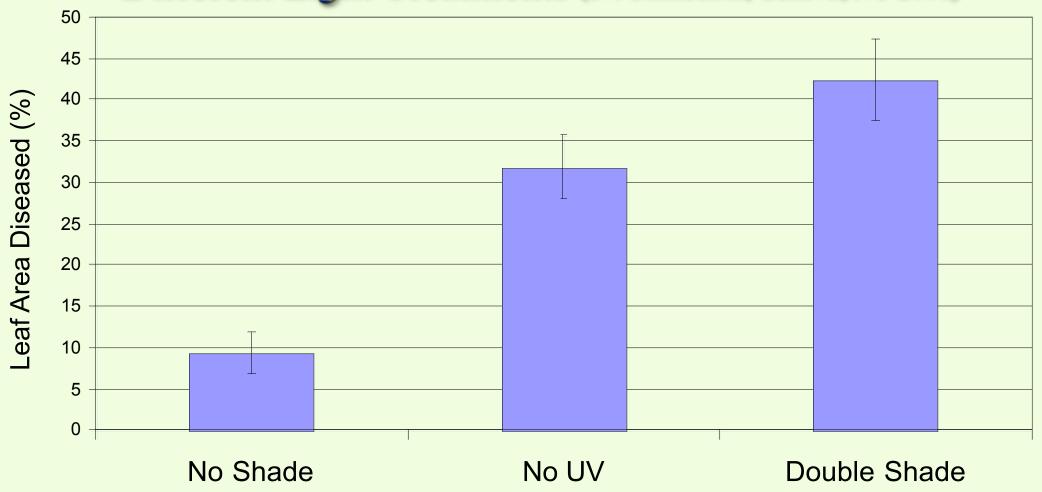
Severity of Powdery Mildew on Foliage of cv. Chardonnay Vines Subjected to Different Forms of Natural Shade '05

ENVIRONMENTAL EFFECTS: SUN-EXPOSED vs. SHADED

- Leaf temperature
 - ◆2 to 23°F (avg. 9°F) higher for sun-exposed
 - +Fungal development: 77-83° = optimum; 90° = maximum; ≥95° = lethal

ENVIRONMENTAL EFFECTS: SUN-EXPOSED vs. SHADED

- ■UV-B Radiation
 - ◆Inner canopy, no trees--8% of exposed
 - ♦ Inner canopy, trees--2% of exposed



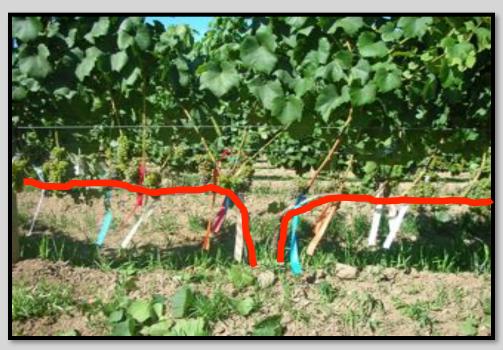
UV filter: Removed 92% of UV-B, allowed longer (heat-producing) wavelengths to pass through

Severity of Powdery Mildew on Foliage Subjected to Different Light Treatments (cv. Chancellor; Geneva, NY 2006)

POWDERY MILDEW: CULTURAL CONTROL

- Canopy management to provide good ventillation, sun exposure
 - ◆ Training system, shoot thinning, leaf pulling

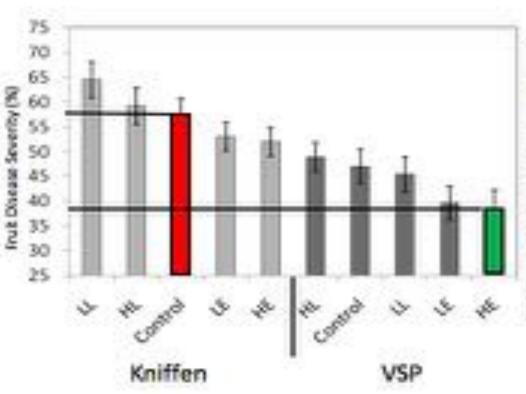
CULTURAL CONTROL: CHARDONNAY


- ■Two training systems
 - **♦** Vertical Shoot Positioning
 - **♦**Umbrella-Kniffen

NEW YORK STATE VARIABILE TRAINING

Umbrella - Kniffen

 \underline{V} ertical \underline{S} hoot \underline{P} ositioning



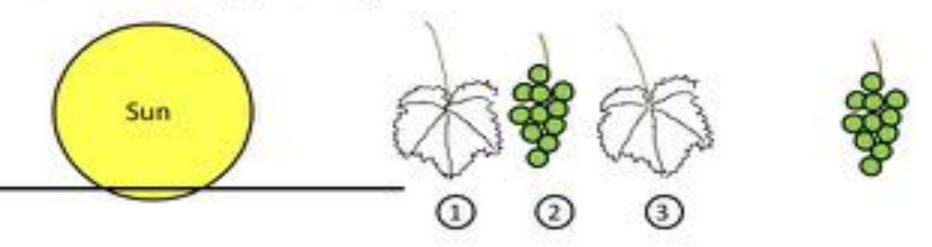
CULTURAL CONTROL: CHARDONNAY

- <u>Two</u> training systems
 - ♦ VSP
 - ◆ Umbrella-Kniffen
- Five leaf-removal treatments
 - ◆ EARLY (2 wk post-bloom) <u>or</u> LATE (5 wk post-bloom)
 - ◆ **HEAVY** (2 leaves above/below cluster) <u>or</u> **LIGHT** (1 leaf above/below)
 - ♦ None (control)

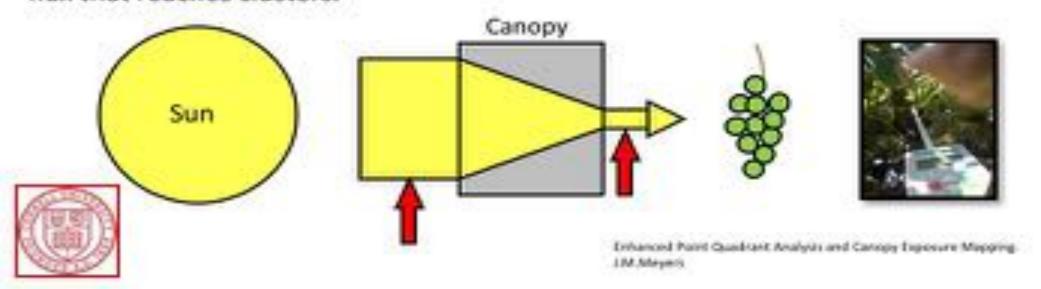
Powdery Mildew Severity on Clusters of cv Chardonnay: 2 Training Systems x 5 Leaf-Pulling Treatments

Term	Estimat	Std Error	Prob> t
Training[Kniffen]	6.79	1.07	<0.0001
Leaf Puli(Control)	0.96	2.32	0.6780
Leaf Pull[Light	-4.98	2.32	0.0325
Early] Leaf Pull[Heavy	-5.63	2.30	0.0153
Early] Leaf Pull[Light Late]	3.78	2.33	0.1063
Leaf Pul(Heavy Late)	2.67	2.51	0.2899

Binary Code

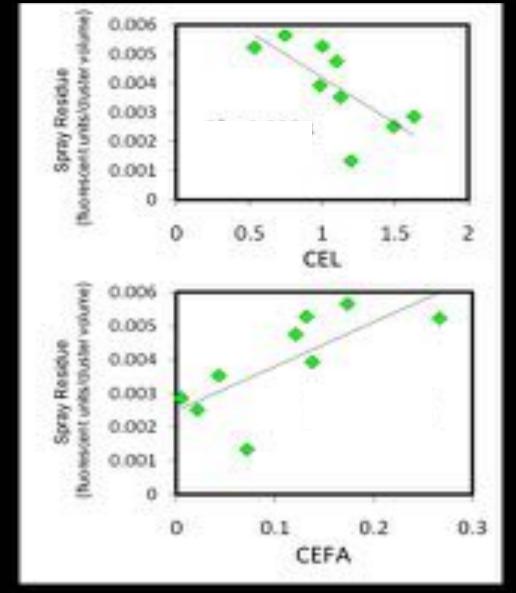

First letter is severity of leaf removal; H = heavy leaf pull, removal of the two leaves above and below the cluster. L = light leaf pull, removal of one leaf above and below the cluster.

Second letter is timing of leaf removal; E = <u>parly</u> leaf pull, removal of leaves four weeks post bloom. L = <u>late</u> leaf pull, removal of leaves six weeks post-bloom.

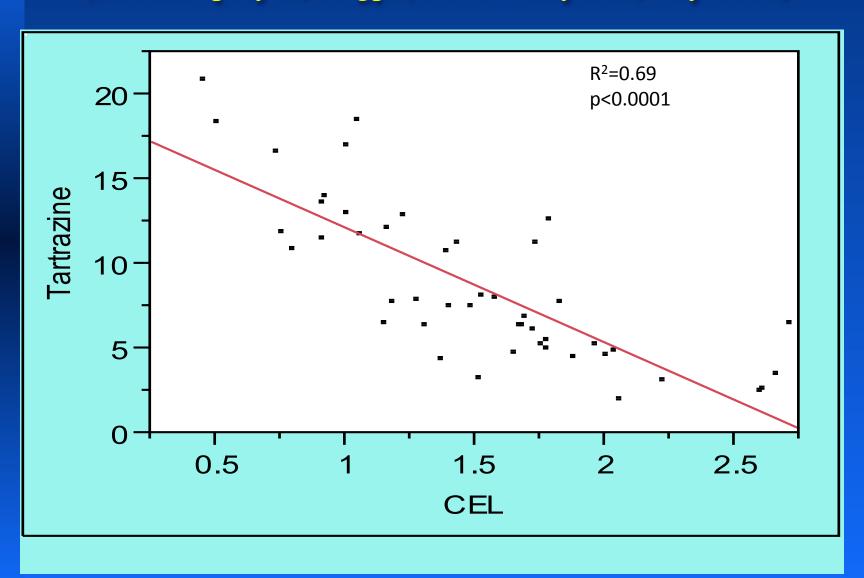

EFFECT OF CLUSTER EXPOSURE ON SPRAY DEPOSITION

If light gets in, sprays get in (and vice versa)

Cluster Exposure Layer (CEL) – Number of shading layers between clusters and the nearest canopy boundary.



<u>Cluster Exposure Flux Availibility (CEFA)</u> – The proportion of above canopy photon flux that reaches clusters.



Spray residue as a function of canopy density, as measured by CEL and CEFA



Spray deposition vs. Cluster exposure (airblast sprayer, 50 gpa; 5 NY vineyards, July 2011)

SUN-EXPOSED vs. SHADED: PRACTICAL IMPLICATIONS

- Pruning/training effects on PM
 - "Optimal" levels of sun exposure should reduce PM pressure
- Disease forecasting
 - ◆ Prolonged cloudy/rainy periods/ seasons favor PM development and *vice versa*
 - → When to intensify vs. relax spray programs

POWDERY MILDEW CONTROL: EFFECT OF CARRYOVER INOCULUM

(Chardonnay, Geneva 2002-03)

Sept. 2002	April 2003			
Foliar PM	Chasmothecia			
% Severity	per kg bark			
1	1,300			
17	5,300			
28	28,700			

^{*}Sprays applied immediate prebloom through fruit set only

POWDERY MILDEW CONTROL: EFFECT OF CARRYOVER INOCULUM

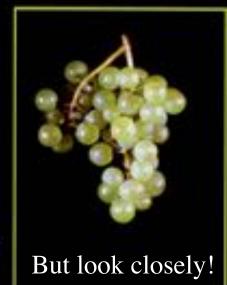
(Chardonnay, Geneva 2002-03)

Sept. 2002	April 2003	Sept. 2003
Foliar PM	Chasmothecia	Cluster PM
% Severity	per kg bark	% Severity*
1	1,300	11
17	5,300	22
28	28,700	48

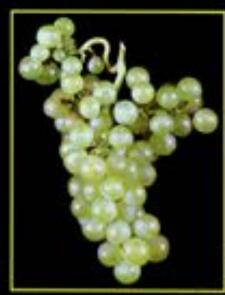
^{*}Sprays applied immediate prebloom through fruit set only

POWDERY MILDEW

PERIOD OF HOST SUSCEPTIBILITY


Chardonnay

21 June prebloom Brix=nd


4 July 2mm fruit Brix=nd

17 July 5mm fruit Brix=4.6

2 August Brix=4.2

15 August Brix=4.8

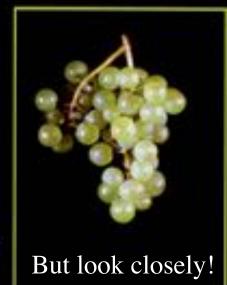
29 August Brix=9.3

POWDERY MILDEW CONTROL: EFFECT OF PRE-FLOWERING + 1st POST-FLOWERING

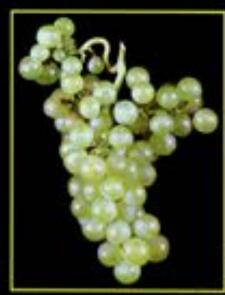
SPRAYS (cv. 'Rosette', Geneva, NY)

			% Area diseased	
Treatment, rate (a.i.)/A	Spray dates	# Sprays	Clusters	Leaves
Untreated	none	0	26	73
Abound, 14 fl oz	24 Jun, 8 Jul	2	2	58
Abound, 14 fl oz	10 Jun-19 Aug	g 6	1	17

1st open flower = 24 Jun; Veraison = 20 Aug; Harvest = 15 Sep

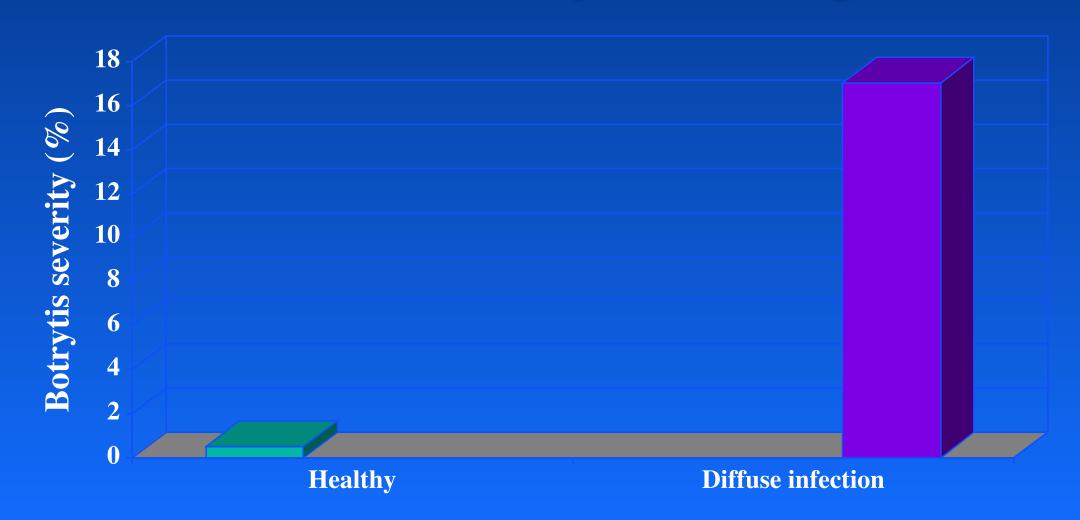

Chardonnay

21 June prebloom Brix=nd


4 July 2mm fruit Brix=nd

17 July 5mm fruit Brix=4.6

2 August Brix=4.2


15 August Brix=4.8

29 August Brix=9.3

Effect of Diffuse Powdery Mildew Infections on Botrytis Development

- Early season (1- to 5-in)
 - ◆ *V. vinifera* only
 - ◆ Initiation of spray program guided by temp, rain events, need to control other pests/diseases (running the sprayer anyway?)

- Early season (1- to 5-in shoots)
 - ◆ Can wait for suitably warm temps
 - → Most PM fungicides have some post-infection activity
 - → Need to control early season insect pests or Phomopsis may dictate timing of first application (tank-mix PM fungicide)

- 10-in shoots
 - ◆ *V. vinifera* cultivars: delay no longer
 - ◆ Susceptible hybrids (e.g., Seyval): a good idea
 - ◆ Can continue to delay on natives, relatively R hybrids <u>unless</u> scouting reveals activity (e.g., on moderately S cultivars)

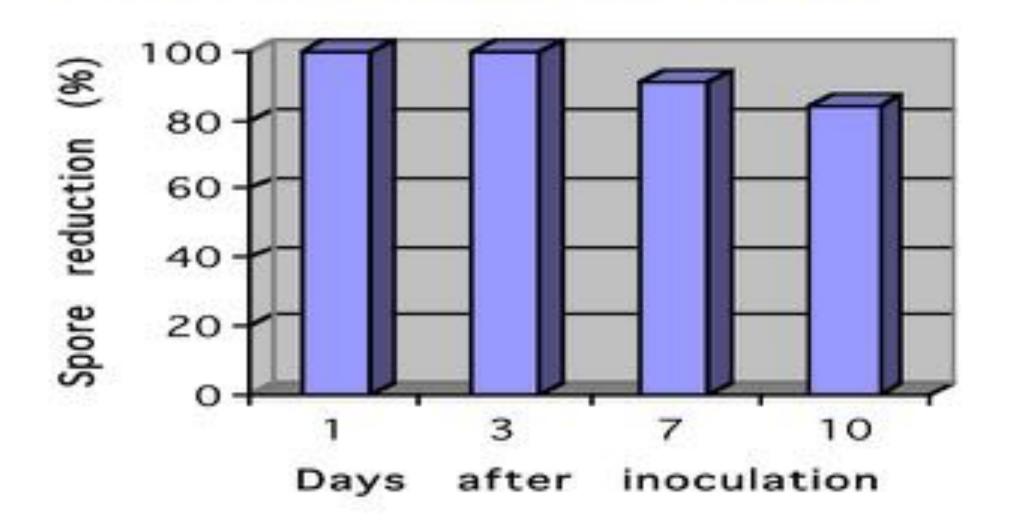
- Prebloom thru "fruit set + 2 wk"
 - **◆CRITICAL!!**
 - **→** Best materials
 - → Best application techniques
 - +DON'T CHEAT

- "Fruit set +2wk" thru bunch closure
 - ◆ Berries more resistant but still susceptible
 - Also need to maintain control on leaves
 - → Don't necessarily need "best" materials but still need something quite effective

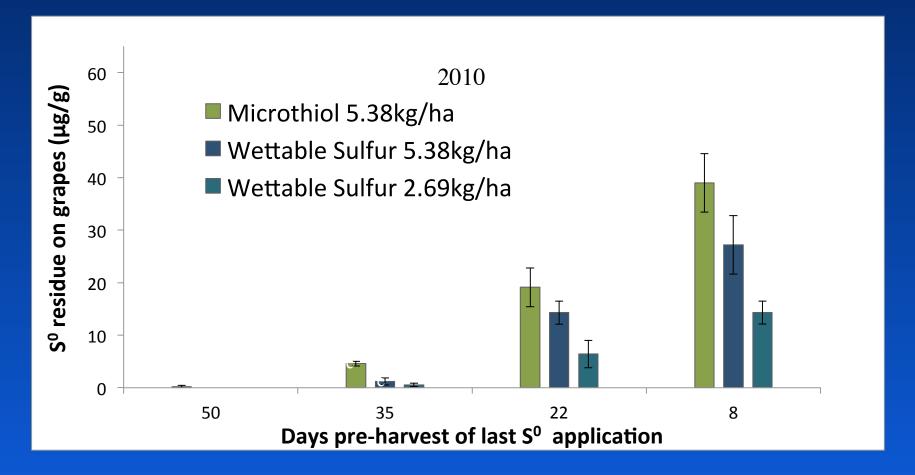
- Mid- thru late summer
 - ◆ Maintain control of foliar infection as appropriate for:
 - → Susceptibility/value of crop
 - → Presence of disease in vineyard
 - → Weather
 - → Desire to make easier next year (1° inoculum)

POWDERY MILDEW

FUNGICIDES

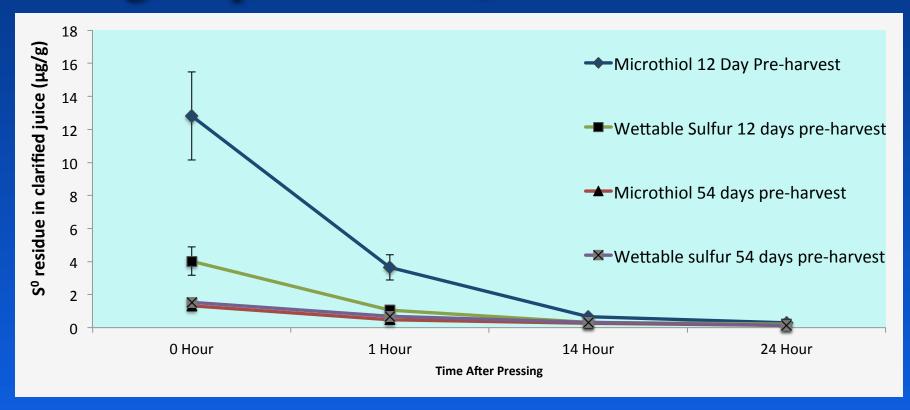

- ADVANTAGES
 - ◆Inexpensive
 - **♦**Effective
 - ◆No resistance
 - ◆"Organic"

- Negatives
 - ♦ Worker exposure
 - ◆ Toxic to predacious mites
 - Phytotoxic to some purple-fruited native and hybrid cultivars



- Other potential negatives
 - ◆ "Poor activity at temps <65°F"
 - **→ Not True**
 - "Protective activity only"
 - + Not True

SULFUR: CURATIVE ACTIVITY



- Other potential negatives
 - ◆ "Poor activity at temps <65°F"
 - **→ Not True**
 - ◆ "Protective activity only"
 - + Not True
 - ◆ "Risk of stinky wines (H₂S)"
 - → It depends

- At 5.4 kg/ha, more residue from Microthiol vs. wettable S
- Wettable S: 8 d @ 3 lb/A = 22 d @ 6 lb/A
- At 5.4 kg/ha (either formulation), residues < 10μg/g only w/≥35 days PHI

Settling experiment (white vinification)

■ Major differences immediately after <u>pressing</u>, but <1µg/g after <u>settling</u>, regardless of starting level!

POWDERY MILDEW FUNGICIDES: THE "BIG GUNS"

- Vivando (FRAC Grp. U8)
 - ◆One of two consistent top performers in my trials
 - ◆PM only
 - Appears to provide significant "vapor activity"
 - →Improves coverage, essentially

GROUP 3 40 FUNGICIDES

PULL HERE TO OPEN -

syngenta.

Fungicide

Active Ingredients:

Total:

Other Ingredients:

56.2%

Revus Top is formulated as a suspension concentrate (SC).

Contains 2.08 pounds of mandipropamid active ingredient and 2.08 pounds of difencionagole active ingredient per gallon

CAUTION

See additional precautionary statements and directions for use inside booklet.

EPA Reg. 100-1278 EPA Est. 100-NE-001

SCP 1278A-L1E 0514 4039307

2.5 gallons

POWDERY MILDEW FUNGICIDES: THE "BIG GUNS"

- Luna Experience (FRAC Grps. 3, 7)
 - ◆One of two consistent top performers in my trials
 - ◆PM + Botrytis (+ BR at highest rate)
 - +Tebuconazole ("Elite", Grp. 3) component
 - Appears to provide significant "vapor activity"

POWDERY MILDEW FUNGICIDES: A "PRETTY BIG GUN"

- QUINTEC (FRAC Grp. 13)
 - ◆ Consistently excellent, one or two cases of resistance in eastern US
 - ◆PM only
 - → <u>Protective</u> activity only (unlike previous two)
 - Appears to provide significant "vapor activity"

POWDERY MILDEW FUNGICIDES: "SDHI" (Group 7)

- First product (boscalid, component of Pristine) in 2003
- Several "2nd generation", appear to be somewhat more active
 - ◆ Luna Experience
 - Aprovia (PM only)
 - ◆ Aprovia Top (+ BR, anthracnose)

POWDERY MILDEW FUNGICIDES: TORINO (FRAC Grp. U6)

- Unique MOA (good rotational partner)
- PM only
 - ◆ Not quite as strong as other "PM-only"s, but still very good ("B+" vs. "A")

POWDERY MILDEW FUNGICIDES: SI/ DMI (FRAC Grp. 3)

- Several, you know them
 - Activity somewhat compromised by "partial" resistance, still largely effective depending on product & rate
 - → Difenoconazole (e.g., Revus Top) consistently best
 - → Flutriafol (Rhyme, TopGuard EQ) also looking strong

POWDERY MILDEW FUNGICIDES: STROBILURINS (FRAC Grp. 11)

- RESISTANCE RISK IS VERY HIGH
 - ◆ Multiple PM failures nationwide when used alone
 - ◆ If using, I recommend only Pristine

POWDERY MILDEW FUNGICIDES: "ALTERNATIVE" PRODUCTS

- Primarily contact action, "body" of PM fungus is on outside of plant
 - ◆ A number of materials are effective against PM that are ineffective against most other fungal pathogens, which grow <u>inside</u> infected organs

POWDERY MILDEW FUNGICIDES: "TOPICAL" PRODUCTS

- Primarily contact action, "body" of PM fungus is on outside of plant
 - ♦ Oils
 - ◆ Potassium salts (Armicarb, Kaligreen, Nutrol)
 - Hydrogen peroxide (Oxidate)
 - ◆ Biological extracts (Milsana), fermentation products (Serenade, Sonata)

POWDERY MILDEW FUNGICIDES: "TOPICAL" PRODUCTS

- Oils
 - ◆ JMS Stylet Oil more effective than others we've tested; has some protective activity also
- **■** Potassium salts
 - ◆ All are equivalent, choose the cheapest
- Biological extracts (Milsana), fermentation products (Serenade, Sonata)

