

PHOMOPSIS: BIOLOGY IN A NUTSHELL

■ Fungus persists (years) in old infected wood

PHOMOPSIS: BIOLOGY IN A NUTSHELL

- Fungus persists (years) in old infected wood
- Produces spores early season, rain-splashed to tissues within a couple of feet
- Infection worse with long rainy periods
- No within-season spread, infection risk over soon after fruit set (spore supply exhausted)

PHOMOPSIS: CONTROL

- Prune out dead wood, pruning stubs to remove fungus (spread is <u>local</u>)
- Critical spray time = When clusters first appear (3- to 5-in shoot growth, +/-)
- One early spray typically adequate, a second (2 wk later) sometimes helps

PHOMOPSIS: FUNGICIDES

- Captan, mancozeb are standards
 - ◆Ziram comparably effective
- Modern fungicides: More expensive, less effective
- No good "organic" options
 - Copper, dormant lime sulfur are best available

ANTHRACNOSE

- In NE, restricted to a few highly susceptible cultivars
 - Vidal blanc traditional problem
 - ◆ New MN cold-hardy cvs (esp. Marquette), also several older Swenson cvs. (x *V. riparia*)
 - ◆ Minor hybrid table grapes (esp. Reliance)
 - (Cayuga white, Chardonnay, Vignoles, Villard blanc, Concord in Midwest, not common here)

ANTHRACNOSE: DISEASE CYCLE

- Fungus overwinters primarily in cane lesions on the vine (also diseased berries on floor)
- Spores produced in spring, dispersed by splashing raindrops (short-distance dispersal)
- Likes it warm (70's and 80's) but infects at colder temps if wet long enough

ANTHRACNOSE: DISEASE CYCLE

- Fungus overwinters primarily in cane lesions on the vine (also diseased berries on floor)
- Spores produced in spring, dispersed by splashing raindrops (short-distance dispersal)
- Likes it warm (70's and 80's) but active at colder temps if wet long enough
- Disease spreads from new infections once they occur (splashing rain)

ANTHRACNOSE: PERIOD OF SUSCEPTIBILITY

- Shoots & leaves: Young, succulent
- Rachises, pedicels: Young
- Berries: Through veraison

- Sanitation
 - ◆1° inoculum almost entirely from within vineyard, reduction is very beneficial
 - *Removal of infected canes
 - ◆Tillage, mulching diseased berries on ground if plentiful and practical

■ Sanitation

- ◆ 1° inoculum almost entirely from <u>within</u> vineyard, reduction is very beneficial
 - → Removal of infected canes
 - → Tillage, mulching diseased berries on ground if plentiful and practical
- Canopy management to facilitate drying, spray penetration

- Lime sulfur (calcium polysulfide) late dormant
 - Greatly reduces spore production from overwintered cane lesions
 - Expensive & unpleasant but can be important control strategy if established in vineyard, esp. if limited fungicide program

- Lime sulfur (calcium polysulfide) late dormant
 - Greatly reduces spore production from overwintered cane lesions
 - ◆ Important control strategy if established in vineyard, esp. if limited fungicide program
- Broad-spectrum fungicides (captan, mancozeb, copper, DMI [Rally, tebuconazole, Mettle, Revus Top) applied against other diseases during season

FUNGICIDE RESISTANCE: A GROWING PROBLEM

- New fungicides = Fungal-specific (+/-) site of activity
 - ♦ Good:
 - → Highly effective
 - +Relatively "clean", non-toxic

FUNGICIDE RESISTANCE: A GROWING PROBLEM

- New fungicides = Fungal-specific (+/-) site of activity
 - ♦ Bad:
 - → Much easier for target fungi to develop means to "dodge this one bullet" = develop resistance

Multi-site Fungicides

- Affect multiple metabolic processes
 - ◆ If fungal mutation negates effect on one process, material is still active against the others
 - ◆ Good: Resistance is very unlikely
 - ◆ Bad: "Non-target" effects

FUNGICIDE (PESTICIDE) RESISTANCE: "EVOLUTION on STEROIDS"

- Results from the
 - **♦** <u>SELECTION</u>
 - ♦ of INDIVIDUALS
 - ♦in a POPULATION

"PRACTICAL RESISTANCE"

■ (1) Loss of acceptable control when material is used according to recommendations

Caused by

■ (2) Increased frequency of resistant individuals in the population

"PRACTICAL RESISTANCE"

■ (1) Loss of acceptable control when material is used according to recommendations

Caused by

- (2) Increased frequency (<u>selection</u>) of resistant individuals in the population
 - Requires <u>survival</u> followed by <u>reproduction</u>

Selection for Resistance

Survivor Population

RESISTANCE MANAGEMENT STRATEGIES

■ Minimize the number of selection events (sprays)

RESISTANCE MANAGEMENT STRATEGIES

- Provide selection pressure (spray) only when the pathogen population size is small
 - x % R of a few x % N of many
 - +Avoid using when significant disease is present
 - Use early in disease cycle
 - To maintain clean vineyard later in cycle

RESISTANCE MANAGEMENT STRATEGIES

- Limit <u>reproduction</u> of selected, resistant individuals
 - ◆ Non-chemical control measures
 - ◆ <u>Effective</u>, unrelated fungicides in rotation, tank-mix

GROUP 3 40 FUNGICIDES

PULL HERE TO OPEN -

syngenta.

Fungicide

Active Ingredients:

Total:

Other Ingredients:

56.2%

Revus Top is formulated as a suspension concentrate (SC).

Contains 2.08 pounds of mandipropamid active ingredient and 2.08 pounds of difencionagole active ingredient per gallon.

CAUTION

See additional precautionary statements and directions for use inside booklet.

EPA Reg. 100-1278 EPA Est. 100-NE-001

SCP 1278A-L1E 0514 4039307

2.5 gallons

RESISTANCE RISK (FUNGICIDE x DISEASE COMBO)

- Function of:
 - ◆ (1) Fungicide biochemistry, activity
 - +Number and quality of specific action site/s
 - → Keep track of via FRAC Group #

FUNGICIDE GROUPS in RISK CATEGORIES

HIGH

◆ Strobilurins (11), Ridomil (4), (Rovral [2]),

■ MODERATE

◆ DMIs (3); SDHI group (7); Elevate (17); Vangard/Scala (9); phosphites (33); Group 40 (Revus, one Zampro component); Vivando (U8); Quintec (13); Torino (U6)

LOW

Mancozeb, sulfur, copper, bicarbonates

RESISTANCE RISK (FUNGICIDE x DISEASE COMBO)

- Function of:
 - ♦ (2) Pathogen characteristics
 - → Reproductive rate, dispersal efficiency
 - ♦ NOTORIOUS (all crops):
 - → Powdery mildews
 - → Downy mildews
 - +Botrytis

Fungicide Resistance Risk

Combined Risk: 0.5-1.5 = low; 2-4 = Medium; 5+ = Higi

11 Sovran, Flint, Pristine 4 Ridomil 2 Rovral	High 3	3	6	9
9 Scala, varigaro 13 Quintec* 17 Elevate 40 Revus U8 Vivando*	Medium 2	2	4	6
33 Confine* M Captan, Folpan, Manzate, Polyram, Ferbam, Dikar, Copper, Sulphur, MilStop, PureSpray green*	0.5	0.5	1	1.5
Fungicide Risk		1	2	3
- Number of sites - Quality of activity Pathogen Risk - Reproductive rate - Dispersal		Phomopsis	Guignardia	Botrytis Plasmopara Ervsiphe

TWO MAJOR TYPES OF RESISTANCE

- Quantitative
 - ◆ "Partial", "shades of gray"
 - Slow decline in efficacy
 - ◆ DMI fungicides (Topas)
- Qualititative
 - "All or nothing", "immunity"
 - ◆ Sudden control failure
 - QoI (Stroby, Fenomenal), SL567A

EFFECT OF RATE ON PM CONTROL: <u>DMI-RESISTANT</u> VINEYARD ('Seyval', Finger Lakes)

%Disease control, fungus type

	/U 1	case contact, ra	ing ab cype
Treatment, rate (a.i.)/ha	All	Susceptible	Resistant
Untreated	(68% cluster area infected)		
Systhane, 112 g	84	94	79
Systhane, 56 g	49	89	29

STROBILURIN (QoI) RESISTANCE IN NEW YORK

- In NY in 2002, serious powdery mildew cluster infections appeared suddenly in treated vineyards, at multiple commercial sites
 - ◆ Extremely susceptible varieties (Chardonnay)
 - ◆ <u>Total of 15 20 applications</u> since registration, then resistance problems began

STROBILURIN (QoI) RESISTANCE IN NEW YORK

- In 2002, serious powdery mildew cluster infections appeared suddenly in treated vineyards, at multiple commercial sites in NY
 - ◆ Extremely susceptible varieties (Chardonnay)
 - ◆ Total 15 20 applications since registration
 - Not all users had problems
 - → Few problems for those who had regularly tankmixed w/sulfur (effective partner), even with >20 applications

POWDERY MILDEWCONTROL, 2002 (cv. CHARDONNAY, FINGER LAKES, NY)

Treatment, rate (a.i.)/ha	% PM, Cluster area
None	80
Standard*	51
Pristine**, 224 g	9

^{*}DMI/2 QoI solo/ DMI/2 QoI solo/ 2 sulfur

^{**}Pyraclostrobin + boscalid

POWDERY MILDEWCONTROL, 2002 (cv. CHARDONNAY, FINGER LAKES, NY)

Treatment, rate (a.i.)/ha	% PM, Cluster area
None	80
Standard*	51
Pristine**, 224 g	9
pyraclostrobin, 77 g	56
boscalid, 147 g	3

^{*}DMI/ 2 QoI solo/ DMI/2 QoI solo/ 2 sulfur

^{**}Pyraclostrobin + boscalid

RATE EFFECT?

POWDERY MILDEWCONTROL, 2003: cv. CHARDONNAY, FINGER LAKES

	PM, % area
Treatment, rate/A	Cluster
None	98
BAS 500 (Pyraclostrobin), 3.9 oz	97
BAS 500 (Pyraclostrobin), 5.4 oz	94
BAS 500 (Pyraclostrobin), 6.8 oz	95

7 sprays @ 2-wk intervals, 6 Jun - 27 Aug

