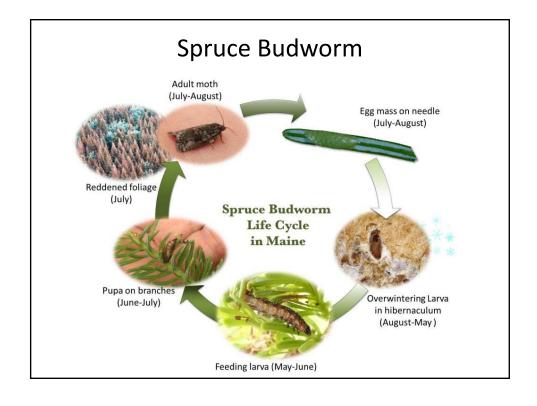
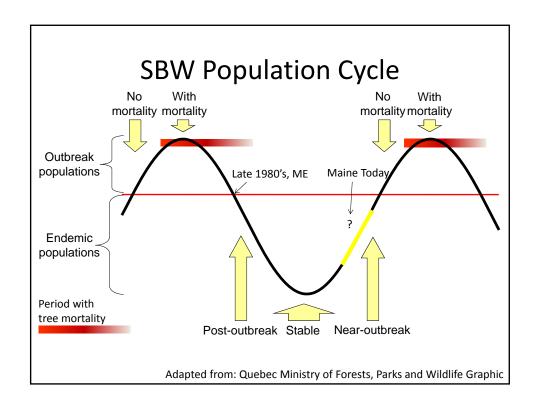
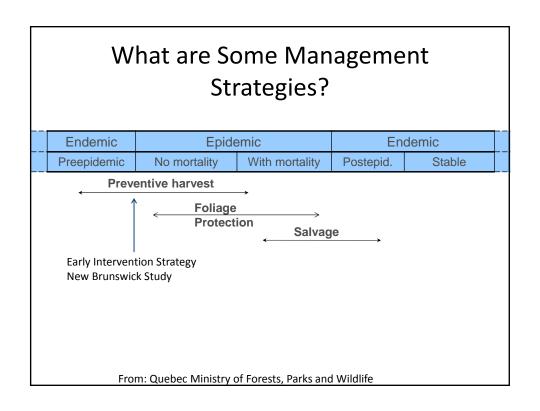


Primary Insect Concerns in Spruce and Fir Silviculture


- Spruce Budworm
- Hemlock Looper
- Balsam Woolly Adelgid
- Spruce Beetle
- Brown Spruce Longhorned Beetle
- (Yellow headed spruce sawfly: spruce regeneration, esp. artificial regen)


Spruce Budworm *Choristoneura fumiferana*


- Native moth
- Defoliator
- Cyclical populations
- Outbreaks cause significant timber-loss
 - Growth loss
 - Tree mortality

Hosts:

 Fir, White Spruce, Red Spruce, Norway Spruce, Black Spruce,

(fall*) Hemlock Looper Lambdina fiscellaria

- Native Moth
- Defoliator
- Occasional Outbreaks

Hosts:

- Hemlock, Fir, White Spruce
- Others in outbreak

* Curve-lined looper (Spring Hemlock Looper): L. fervidaria

Geometrid "looper"

Measuringworm, Inchworm, Spanworm

Hemlock Looper

- Feed on new foliage early
- Move to older foliage
- "Wasteful" feeder
- Trees with > 70% defoliation: branch, top, tree mortality
- Can kill a tree in a single season

1990's Assessment of Spring Looper Damage in NE

Given the same or less severe defoliation:

Trees with basal wounds did not survive as well as those without detectable wounding.

A MATTER OF ENERGY

Energy Required for Metabolism Shift to Produce Anti-Infection Products

Energy Required for Structural Anti-infection Products

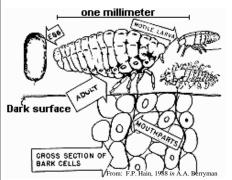
Energy Required to Build Barrier Zones

Protection is of Highest Priority for Tree

Protection Mechanisms Occur at the Cost of
Wood Production
W.D. Ostrofsky

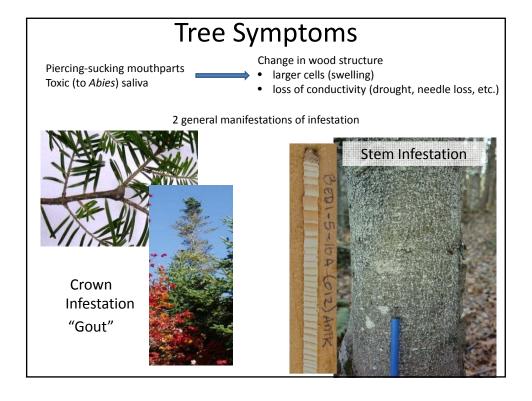
Hemlock Looper

- Outbreaks can develop suddenly (1920's, 1960's, 1990's ME)
- Most severe in mature hemlock and fir
- MFS Fact sheet has scouting methods, action thresholds



Balsam Woolly Adelgid

- Invasive adelgid
- Brought into US around 1900 (detected 1908 Brunswick, ME)
- Spread throughout resource w/in climate envelope in Eastern US
- Chronic damage, frequent episodes of more severe damage



Balsam Woolly Adelgid Life History

- One host (fir species)
- All females
- Two generations/year
 - Warmer climate more generations
- Egg, 4 larval instars, adult
- +/- Sessile
 - 1st instar
 - Mobile (crawler)
 - Dispersal

Damage Classified As: Trunk (Bole) Phase Crown (Gout) Phase

Balsam Woolly Adelgid

- Expect more damage after warm winters
- Expect surge in host mortality/decline after droughty growing seasons
- Anticipate short cutting rotation in fir
- Favor other species where possible (also reduces risks from spruce budworm)

Spruce Beetle Dendroctonus rufipennis

- Endemic: Weakened trees
 - Overmature
 - Windthrow
 - Poor sites
- > 7" Dia
- Windthrow often ctr. of outbreak
- Epidemic can attack apparently healthy trees

Brown Spruce Longhorned Beetle

Tetropium fuscum

- Non-native woodborer of spruce
- Prefers stressed trees
- Attacks apparently healthy trees
- Introduced near Halifax NS in late 1990's
- Spread throughout NS (and into NB)
- Proactive forest management may limit damage...

https://novascotia.ca/natr/forestprotection/foresthealth/sheets/BSLB-Best-Practices-ENG.pdf

BEST MANAGEMENT PRACTICES

Using Best Management Practices is the best way you can help protect your woodlot from the Brown Spruce Longhorn Beetle (BSLB).

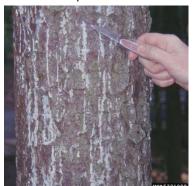
ractice the following:

- Maintain a healthy forest through proper silviculture and harvest activities.
- Remove "at risk" trees (blowdown, broken tops, and weak/unhealthy trees).
- Harvest infested trees showing signs and symptoms of the BSLB.
- Process logs during late fall-winter to help reduce the risk of spread.

...however:

"In the absence of BSLB, red spruce under stress can survive many years of reduced growth rates...and bounce back when conditions improve. However, once a stressed spruce is infested by BSLB, it will die in one to five years."

NR CANADA CFS BSLB FAQs



BSLB vs. native spruce bark beetle

Brown Spruce Longhorned Beetle

Copius resin flow (maybe BSLB)

 From larvae boring from outside bark into phloem

Spruce Bark Beetle

Pitch tubes (Native)

 Rxn to attempt to deposit egg w/in phloem layer

BSLB vs. native spruce bark beetle

Brown Spruce Longhorned BeetleGalleries

Spruce Bark Beetle

Galleries

Yellowheaded Spruce Sawfly

- Primarily a pest of plantation/ornamental
- Has required chemical control in ME on occaision (plantation)
- Looks like a caterpillar, does not respond to Btk

Rooting Characteristics

Shallow-Rooted Species

Avoid Damage During Stand Entries

Windthrow-prone

Primary Disease Concerns in Spruce/Fir Silviculture

- Key message: avoid damaging residual trees
 - http://www.maine.gov/dacf/mfs/forest_health/diseases/logging_i njuries.htm
- Top Rot
 - Stereum sanquinolentum (Bleeding Stereum) and others
- Root and Butt Rots: A lot of players!
 - Polyporus tomentosus
 - Phaeolus schweinitzii
 - Armillaria spp.
 - And others
- (Needlecast Diseases)

Root and Butt and Top Rots: Balsam Fir

Often in trees with no detectable defect:

TABLE 28. PERCENTAGE OF BALSAM FIR TREES HAVING ROTS IN UPPER MICHIGAN

Bole Characteristics	Top Rot	Butt Rot	Total Rot
No visible defect	. 3	28	29 >
Damaged roots	. 17	83	92
Woodpecker holes	. 30	81	89
Branch stubs, lower bole	. 17	62	89 73
Branch stubs, upper bole		46	63
Cracks		64	73
Mechanical injury	. 30	59	69
Flat-topped trees	. 20	54	66

Source: Prielipp, 1952.

1965 Bakuzis and Hansen

Balsam Fir: A Monographic Review

"In Upper Michigan the age of stand break-up varies with soil moisture, and occurs at approximately the following ages: 70 years for uplands, 80 years on transition, and 90 years in swamps. On upland sites decay enters at 30–35 years, and the quality rotation is set at 45–50 years. The quality rotation age is 55–60 years for transition areas and 65–70 years for swamps. . . . Balsam fir stands that have been suppressed severely, subjected to mechanical injury from logging or climatological factors, or exposed to fire should be closely watched These stands will ultimately have excessive cull and should be handled accordingly."

Despite variability in incidence of rot:

- Range-wide agreement that ~70-80 years = pathological rotation age
- Quality rotation age ranges from 45 years on dry sites to 65 years in wet flats.

1965 Bakuzis and Hansen

Red Spruce & Rot

- Damaged, stressed, overmature trees susceptible to some of the same decay fungi.
- Less prevalent than in Balsam fir.
- Avoidance of wounding important

Red Heart

- Bleeding Stereum
- Most common cause of 'top rot' of balsam fir
- Heart-decay
- Enters through wounds
- Also can infect spruce and other confiers

Root and Butt Rot Symptoms

- Thinning crowns
- Stunted growth
- Chlorosis
- Stress cone crop

Polyporus tomentosus

(Inonotus tomentosus, Onnia tomentosa)

- Brown cubical rot (red stained) of roots/butt logs
- White pocket in later stage
- Enters wounds
- Spread from infected trees to healthy through roots contact
- Can persist after harvest (>15 yr)
- More common in droughty, acidic, thin soils

Phaeolus schwienitzii

- "cow pie" fungus
- Brown cubical rot
- Not a disease of the elderly
- Usu within bottom 3' of tree
- Affects heartwood of root/butt
- The end often comes with trunk breakage or windthrow

Aged conk

Armillaria Spp.

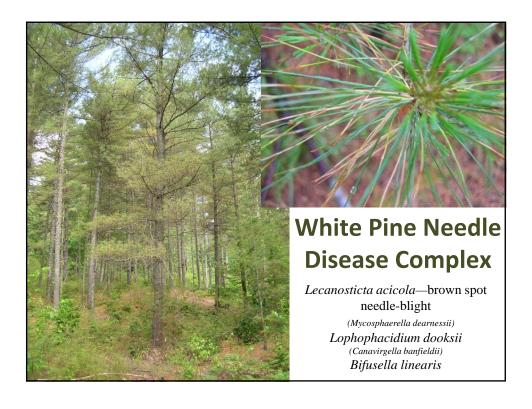
- ~7 Spp. in NE
- Honey mushroom
- Shoestring root rot
- Survives on dead or living tissue
- White, stringy rot
- White mycelial fan
- Rhizomorphs
- Resin-soaking at base of tree
- Swelling at base of tree

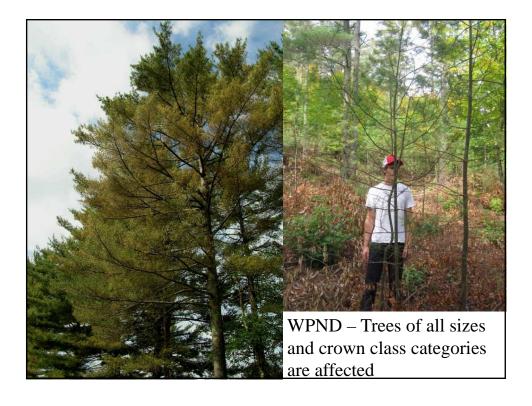
Spruce needlecast diseases

Rhizosphaera needlecast

 Infects during shoot elongation

Stigmina needlecast


Can infect throughout growing season



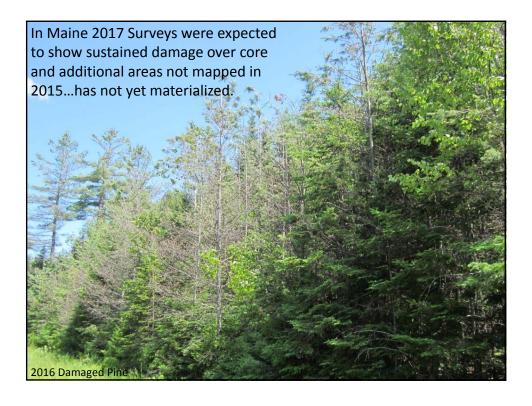
Currently white spruce is showing more injury than other forest-spruces; unclear how significant will be to forest health; Colorado blue very susceptible

A Foray into Associated Tree Species

- White pine needle damage
- Pine leaf adelgid
- Hemlock woolly adelgid

Tree Impacts - NB 1950's

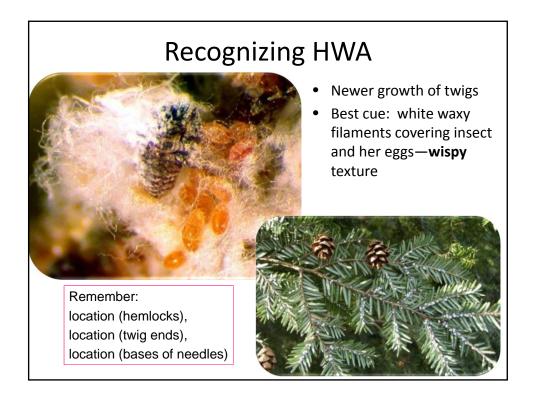
Atlantic Canada 1940's	Stand 1 (20 yr old)	Stand 2 (40 yr old)
Pct Pine/Pct Spruce	44/20	57/22
DBH of Pine	1"-4"	1"-9"
White pine Dead	4%	18% (all <5" dia)
White Pine Severe	26%	61%

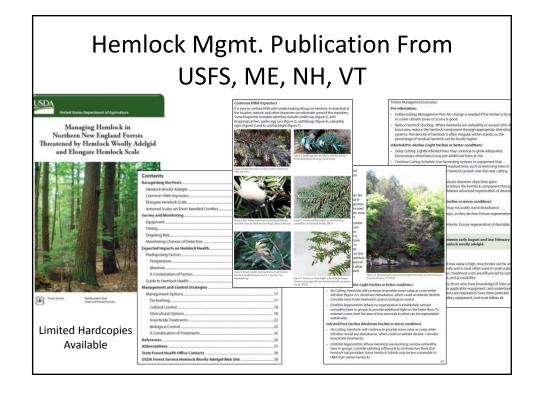

These figures represent conditions in an area where there have been intermittent heavy attacks for ten years. Mortality has been slight and confined to small trees. Loss of growth has been considerable, and a small number of measurements suggests that it will probably average five or more years of normal increment if no further attack takes place. This has tended to favour competi-

Diameter growth loss in white pine over 10 year outbreak equivalent to 5 years of normal growth

When is Pine Leaf Adelgid a Problem?

- Infrequent but significant outbreaks
- Stands with mixed spruce/pine (large component of each)
- Developing stands (5' tall to small pole-sized)
- Intermediate/overtopped trees
- Worse in 2-storied stands
- Impact primarily to pine primarily
 - Growth loss
 - Mortality of young
 - BUT mature/established also impacted
- In Maine 2017 Surveys are expected to show sustained damage over core and additional areas not mapped in 2015





Further Reading

Forest Insects:

Insects of Eastern Forests MP 1426 https://archive.org/details/insectsofeastern1426unit

Brown spruce longhorned beetle http://www.nrcan.gc.ca/forests/fire-insects-disturbances/top-insects/13373

Managing Hemlock in Northern New England Forests Threatened by Hemlock Woolly Adelgid and Elongate Hemlock Scale

https://www.na.fs.fed.us/pubs/detail.cfm?id=48646

Insects that Feed on Trees and Shrubs, 2nd Ed. (Johnson & Lyon, Cornell)*

Tree Diseases:

Diseases of Forest and Shade Trees of the United States AH 386 https://naldc.nal.usda.gov/naldc/download.xhtml?id=CAT86859738&content=PDF

Diseases of Trees and Shrubs (Sinclair, Johnson & Lyon, Cornell)*

*~\$100 each (older editions and used available from used booksellers; new editions have important updates, but older editions are also excellent resources)

Photo Credits

Maine Forest Service unless otherwise specified.

Hemlock looper Defoliation aerial, USDA FS-NA, Bugwood.org
Balsam Woolly Adelgid, Trunk (Bole), A. Wopat, Weyerhaeuser
Spruce Beetle Galleries, D. Blackford, USDA FS, Bugwood.org
Brown Spruce Longhorned Beetle Damaged Stand, Bob Guscott NS DNR
Brown Spruce Longhorned Beetle Resin Flow, J. Sweeney, NR CAN,
Bugwood.org

Brown Spruce Longhorned Beetle Gallery, Ken Harrison, NR CAN, CFS Root disease general, S.K. Hagle, USDA Forest Service, Bugwood.org Yellowheaded spruce sawfly Larvae, F. Gralenski

Polyporus tomentosus NR Canada

Phaeolus schweinitzii Aged conk USDA FS Northern& Intermountian, bugwood.org