Outline (Afternoon)

- · Silvics and Ecology
- Natural disturbance dynamics; historical forest development
- Successful Natural Regeneration
- Northern white-cedar
- Even-aged Silviculture Production forestry
- Multi-aged Silviculture
- Ecological forestry using irregular sheltewood variants – Acadian Femelschlag (AFERP Study)

V: Even-aged silviculture for commodity production

- REGENERATE to full stocking, spruce well represented
- THINNING to precise target residual densities is the defining feature here
 - PCT
 - Commercial
 - Views have changed recently, owing to loss of markets for small-dbh SF pulpwood

Precommercial Thinning

- Definition, candidate stands
- Why do landowners do this?
- Prescription Issues

Candidate Stands

- Age 10-20 from overstory removal
 - Live crown lifted off ground, but...
 - Stump diameter < 4"</p>
- Typically had history of herbicide release treatment 5-10-years earlier; now, most are from shelterwood removal cuts

Rationale for Precommercial Thinning

- Attempts to grow crop trees to merchantable size much sooner than would occur naturally.
 - 20-30-year reduction in time to merchantability
- Major opportunity to alter species composition away from fir (cleaning)
- Builds windfirmness for later partial entries

Prescription Issues

- Residual Density (= spacing)
- Species
 - Spruce vs. Fir
 - Lower stratum species (cedar, hemlock)
 - Concept of "Invisible Species"
 - White Pine

Species Choices

- Favor spruce when tree is X times the height of the competing fir
- X has varied from zero to .3 or less
- Make spruce "invisible"

Dealing with slow-growing lower strata

- Northern white-cedar, Hemlock
- If relatively rare or prescription would essentially eradicate them, treat as "invisible"
- Neither a crop tree, nor competition for crop trees.
 - Don't release
 - Don't cut to release crop tree.

Species Choices

- White pine: wide range of approaches
 - Low on pecking order
 - Top choice
- Danger of attack by blister rust, white pine weevil if released

White pine prescriptions

- Just say no (don't PCT). Pine will be better off without treatment.
- Leave very narrow spacing (< 4')
 - Not practical unless pine density very high.
- Leave a clump of unthinned trees around 50-100 pines per acre.
 - Keep lower branches crowded

Stand Responses to PCT

- PCT always increases merchantable yield
- Amount of yield increase depends on early tending, spacing, stand age, and merchantability thresholds

Optimum Combination PCT and Commercial Thinning — (Saunders et al 2008)

- PCT spacing 6x6 and 8x8 feet
- Early and Late commercial thinning
- Used PPHarvest to simulate harvest cost based on piece size (volume per tree harvested)
- 4% discount rate
- Assumes good original stocking, as with shelterwood cutting or herbicide release

Synthesis

- ✓ Not thinning (no PCT or CT) is the WORST strategy financially – Yay, we can't afford NOT to practice intensive silviculture!
- ✓ If no PCT, then early CT (ht = 45) is best and outperforms PCT with no CT....not bad. Final harvest at age 70, NPV = \$950/acre.
- ✓ If PCT, then leave high density (1200 tpa), CT early. Final harvest @ age 50, NPV = \$1050/acre. (2016: Probably no longer true, owing to loss of small-tree markets?)

VII. Irregular Shelterwood Silviculture, inspired by natural disturbance dynamics

Important Silvicultural Concepts

- Shelterwood Semantics
- Conservation of growing stock
- Two-rotation species "tall regeneration"
- The 3 kinds of structural retention --Permanent legacy, Growing stock, Temporary overwood
- Regeneration in partial shade

Personal Reflection

- "This fits probably 95% of what we need to do…." Why?
- "New England forests are complicated! Deal with it!"
- Complexity

Shelterwood Semantics

- Relies on the establishment of advance regeneration in partial shade before the overstory is removed
- Conventionally, all cuttings occur near the end of the rotation in an even- or two-aged silvicultural system (relaxed for irregular shelterwood)

Shelterwood sequence

- Preparatory Cuttings (Optional!)
 - To prepare for regeneration by developing good seed-bearing trees and eliminating undesirable seed sources
- Establishment (= "seed") Cuttings
 - Goal is to establish advance regeneration
- [Overstory] Removal Cuttings (OSR)
 - Remove the overwood, *release* advance regeneration
 - Can be more than one removal cutting
 - complete or incomplete

Variants based on the *spatial pattern* of the cuttings

- Uniform
 - Regeneration is recruited uniformly throughout the stand by leaving uniformly stocked overwood in the estab. cutting
- Group
 - Separate patches within the stand are at different stages of the shelterwood sequence
- Strip (Narrow, < ½ tree in height)
 - Linear groups

Group shelterwood

- Takes advantage of naturally established patches of advance regeneration
- One way to create horizontal diversity in originally uniform stand
- Cuttings expand outward from patches where overstory is removed in stage 1

Modifying adjectives:

- Some mature trees ("reserves") left after regeneration is established (to create or maintain a two-aged stand)?
 - Add "with reserves" (or with coppice method, "with standards") to the above even-aged methods (e.g.: shelterwood with reserves, clearcut with reserves, seed tree with reserves, coppice with standards)

Variants based on the *timing* of removal cuttings (length of regeneration period)

- Conventional (3-5 years)
 - Overwood removed as soon as seedlings are established (intolerants)
- Extended (10-25 years)
 - Final removal cutting delayed until advance growth is sapling size (above bh)
- Irregular (no defined period)
 - some lower-stratum trees of the older cohort held over into the next rotation; regeneration period extended indefinitely

What defines "Irregular?"

- Regeneration period extends for decades and has an uneven (=irregular) height structure (usually as a result of multiple partial cuttings or disturbances)
 - Relies on advance regeneration, thus is example of shelterwood method
- Eventually all old (large) trees are harvested (except designated permanent legacies), then the stand goes through several decades of stem exclusion (not a "balanced" system)

Why use *Irregular* instead of simpler variants?

- Best system for growing all trees to financial or biological maturity in diverse, mixed-species stands – "conservation of growing stock"
 - Relies on ability of species to respond to release after growing in the lower strata for decades (shade-tolerant, late-successional)
 - Concept of "two-rotation" species, or "tall regeneration" that need a head start
- Restore ecological complexity in forests that have been simplified

Key Concept: "Two-rotation" species, in stratified, mixed-species stands (Dave Smith concept)

- Some later-successional species require two rotations of their earlysuccesional associates to reach the canopy and grow to financial maturity.
- Must maintain two-aged stratified mixed species stand structure to keep these species in the main canopy
- Use low thinning ONLY WITHIN A SPECIES or STRATUM

Key Concept: "Two-rotation" species Examples

- Eastern hemlock and white pine with northern red oak (Kelty 1986)
- Northern hardwoods (maple, beech) in competition with black cherry (Marquis 1992) or paper birch/aspen
- Red spruce in competition with hardwoods and balsam fir (Davis 1991)
- Northern white cedar almost everywhere

Irregular shelterwood: any multiaged system that:

- Relies primarily on advance regeneration
- Maintains a diverse vertical canopy structure (including merchantable trees that could be harvested)
- Does not use a dbh distribution as a target structure, but can instead use area-based goals (if group)

Structural Retention – Three Components

- Permanent Biological Legacies meet biodiversity goals
- (Temporary) Overwood provide seed source and partial shade for regeneration establishment
- Growing Stock trees with growth potential, not yet mature financially or biologically
- These may overlap

Contemporary North American Applications

- Extended, uniform shelterwood with large reserve trees
 - Distinctly two-storied structure
- Irregular shelterwood with old but short reserves ("hold-over" trees, "tall regen")
- Irregular group shelterwood, with or without reserves
 - Includes expanding-gap Femelschlag systems

Emulating Natural Disturbance (Ecological Forestry)

- Uniform systems arguably not adequate, even with reserves.
- "Group" approaches more in accord with natural gap dynamics

A Digression about "groups" or "patches"

- Avoid geometric patterns and shapes, especially with no retention in the groups!
- Unlikely to intersect the real diversity of structure, spatial pattern of advance regeneration, and quality of growing stock.

Problems with gaps with no retention

- Too much area in direct sunlight (Marquis diagrams)
- Immature growing stock (tall regeneration) often needlessly sacrificed, owing to a false believe that such trees won't respond to release
 - Just the opposite is true; if you don't keep them, you'll lose these species

Added Prescription Element

- Uniform shelterwood (with reserves)
 within the gap for regeneration this is
 the ESTABLISHMENT CUT step
- What makes this "irregular"?
 - Spatial context within the rest of the stand (which is largely still a thinned fully stocked matrix)
 - Retention of small poles as future growing stock ("Tall Regeneration")

- Disturbance regimes dominated by partial disturbances (some minor exceptions), long-lived shadetolerant species
- Stand-replacing disturbances and thus, even- aged stands, were very rare

What silvicultural systems do these dynamics imply under an Ecological Forestry paradigm?

- Multi-aged stand structures, with a significant component of "old" trees
- Regeneration in small gaps or patches within irregular stands
- What is our Target Stand Structure?
- Two options: DBH or AREA?

From Nyland (1996) The "Target Structure" -DBH Option 1: Numbers per acre on A tree size (dbh) structure Descriptive perhaps, but not **Unnatural** and informative Rarely Used ibution rec

Ecological Forestry – What **/S** "Natural?"

- Since ca.1990, significant studies in disturbance ecology have led to useful, quantitative working hypotheses for most common forest types
 - Disturbance rates
 - Patch sizes
 - Post-disturbance Legacies

Natural Disturbance Analogues in Silvicultural Prescriptions

- Disturbance rate: Cutting cycle, percent of stand regenerated per entry
- Patch size: Gap or group sizes; their orientation and proximity to each other
- Biological Legacies: Designation of permanent reserve trees in gaps

Formulating ecologically based silvicultural systems: *regeneration rate*

- The "1% rule": Within the stand, area regenerated at each harvest should fall within natural disturbance boundaries
 - ✓ For a balanced system, portion of stand regenerated = cutting cycle (in percent)
 - ✓ Eg: 10% per decade, 20% every 20 years, etc.

Formulating ecologically based silvicultural systems: *patch size*

- Spatial arrangement of areas regenerated should also fall within natural limits
 - ✓ patch size = .01- 0.1 ha <<< stand size
 - ✓ Larger patches depart from the "natural" (but are still preferable to stand-wide uniform treatments)
 - ✓ Think in terms of fewer, larger stands with more within-stand diversity

Formulating ecologically based silvicultural systems: *biological legacy*

- 3. Designate permanent reserve trees as a biological legacy *in gaps as they are treated*
 - Maintains and restores late-successional conditions as regenerating groups enter stem exclusion
 - √ 10% of original stand (15 ft²/ ac), focusing on larger trees of late-successional, longlived species (arbitrary, hopeful)

"What do we call this?"

- Apply shelterwood with reserves, but in patches within stands
 - ✓ Entire stand contains examples of all stages of the regeneration process
 - ✓ Age structure within stands varies spatially across the stand, and temporally within gaps

The "Acadian Femelschlag" (AFERP Study, ca. 1994)

- Expanding gap system based entirely on three ecological parameters (not from established "cookbooks!"):
 - √ 1% annual disturbance frequency, over 100 years
 - ✓ Small, sub-stand regeneration patches (0.1 0.2 ha, expanded on 10 or 20-year cutting cycle)
 - √ 10% (arbitrary) permanent structural retention, dispersed throughout the entire stand
- North American Translation:
 - Irregular group shelterwood with reserves (large gaps)
 - Group selection with reserves (small gaps)

Advantages of Group-based Shelterwood Systems -- Ecological

- Manages regeneration deliberately, not by assumption (of future ingrowth)
 - -- Gap size, overall regeneration rate
- Ecological sustainability guaranteed (if cutting cycle is comparable to natural disturbance rates)
- 3. No need to assume a problematic linkage between age and size

All of these are demonstrated Achilles' Heels of B-d-q structural approach!

Advantages of Group-based Shelterwood Systems -- Operational

- 4. Pre-harvest layout, designation of reserve trees, logging, early tending are all concentrated on 10-30% of stand
 - -- No need to work throughout entire stand (after first entry)
- 5. No need for pre-harvest dbh distribution information, or overall marking tally
- 6. Light harvests (<25%) are feasible (volumes are concentrated, not dispersed)

Long-reach CTL systems are ideal for these gap expansion harvests – Ponsse Ergo

Fate of AFERP	Tree Species	Number	Survival
Reserve Trees	Abies balsamea	4	100
Reserve frees	Fraxinus americana	22	100
MUCH better	Fraxinus nigra	1	100
MOOIT Better	Ostrya virginiana	2	100
than studies in	Picea glauca	6	100
	Populus grandidentata	12	100
single-cohort	Quercus rubra	20	100
	Tsuga canadensis	150	97
stands!	Acer saccharum	32	97
	Acer rubrum	120	97
	Betula alleghaniensis	14	93
	Pinus resinosa	14	93
	Pinus strobus	127	91
	Fagus grandifolia	17	88
建筑的设施基础	Picea rubens	150	88
	Betula papyrifera	25	84
David Carter, MS	Thuja occidentalis	85	82
Thesis (2015)	Populus tremuloides	18	67
	Total	820	92

"What have we learned?"

- These gap-based systems are clearly viable (Saunders and Arsenault 2013) and have been widely adopted by public lands' managers and family forest owners.
- The longer I follow and manage these experiments, the more encouraged and enthusiastic I become.
- But, this will not work everywhere! (there are no silvicultural panaceas)

Irregular Shelterwood is not just about managing structure!

- Must also ensure suitable conditions for regeneration where overstory is not fully stocked
- Failure to do so can cause the composition to "drift" in the direction of low-value shade tolerant generalists – beech in NHw, fir in N Conifers
- Advantage of Group-based approaches

Irregular shelterwood is not a panacea for everything

- Not applicable in: Uniform even-aged stands dominated by shade-intolerant, earlysuccessional, short-lived species (pure aspen)
- Predicting stand development (with models like FVS) is problematic, owing to spatial irregularity

Take-home:

- Apply group shelterwood when the stand is spatially diverse ("patchy")
- Avoid geometrical regeneration patches with no retention (except aspen) - put them where they need to be and leave overwood to create diffuse light in understory. When you do this, size of group becomes irrelevant.
- Conserve small-dbh growing stock always (tworotation species), but....
- Remove undesirable low shade from midstory competitors if needed.
- Leave permanent legacies to meet biodiversity objectives related to large, old trees

References

- Fraver, S., A.S. White, and R.S. Seymour. 2009 Patterns of natural disturbance in an old-growth landscape of northern Maine, USA. Journal of Ecology 97: 289–298.
- Moores, A.R., R.S. Seymour, and L.S. Kenefic. 2007. Height development of shade-tolerant conifer saplings in multi-aged Acadian forest stands. Can. J. For. Res. 37:2715-2723.
- Raymond, P., Bédard, S., Roy, V., Larouche, C., and Tremblay, S. 2009. The irregular shelterwood system: review, classification, and potential application to forests affected by partial disturbances. Journal of Forestry 107: 405–413.
- Saunders, M.R., and Arseneault, J.E., 2013. Potential yields and economic returns of natural disturbance-based silviculture: a case study from the Acadian forest ecosystem research program. Journal of Forestry 111:175–185.
- Seymour, R. S. 1992. The red spruce-balsam fir forest of Maine: Evolution of silvicultural practice in response to stand development patterns and disturbances. Ch. 12 (p. 217-244) In: Kelty, M. J., Larson, B. C. and Oliver, C. D., eds. *The Ecology and Silviculture of Mixed-species forests*. Kluwer Publishers, Norwell. MA. 287 p.
- Seymour, R. S. 1995. The Northeastern Region. p. 31-79 In: Regional Silviculture of the United States, Ed. 3. Ed. J. W. Barrett. Wiley and Sons, N. Y. 643 p.
- Seymour, R.S., A.S. White and P.G. deMaynadier. 2002. Natural disturbance regimes in northeastern North America – evaluating and formulating silvicultural systems using natural scales and frequencies.
 Forest Ecology and Management
- Seymour, R.S. 2005. Integrating disturbance parameters into conventional silvicultural systems:
 Experience from the Acadian forest of northeastern North America. P. 41-48 In: Peterson, C.E. and
 Maguire, D.A., editors. Balancing ecosystem values: innovative experiments for sustainable forestry.
 USDA For. Serv. Gen. Tech. Rep. PNW-GTR-635. 389 p.
- Westveld, M. 1931. Reproduction on the pulpwood lands in the Northeast. USDA Tech. Bull. 223. 52 p

Acknowlegements

- David M Smith
- Maxwell L McCormack Jr, Gordon Mott
- Mac Hunter
- Laura Kenefic
- Shawn Fraver
- George Ritz, Jensen Bissell, many others
- Northeast States Research Cooperative

